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ABSTRACT

Sound Event Detection (SED) in audio scenes is the task that has
been studied by an increasing number of researchers. Recent SED
systems often use deep learning models. Building these systems
typically require a large amount of carefully annotated, strongly la-
beled data, where the exact time-span of a sound event (e.g. the ‘dog
bark’ starts at 1.2 seconds and ends at 2.0 seconds) in an audio scene
(a recording of a city park) is indicated. However, manual labeling
of sound events with their time boundaries within a recording is very
time-consuming. One way to solve the issue is to collect data with
weak labels that only contain the names of sound classes present
in the audio file, without time boundary information for events in
the file. Therefore, weakly-labeled sound event detection has be-
come popular recently. However, there is still a large performance
gap between models built on weakly labeled data and ones built
on strongly labeled data, especially for predicting time boundaries
of sound events. In this work, we introduce a new type of sound
event label, which is easier for people to provide than strong labels.
We call them ‘point labels’. To create a point label, a user simply
listens to the recording and hits the space bar if they hear a sound
event (’dog bark’). This is much easier to do than specifying exact
time boundaries. In this work, we illustrate methods to train a SED
model on point-labeled data. Our results show that a model trained
on point labeled audio data significantly outperforms weak models
and is comparable to a model trained on strongly labeled data.

Index Terms— Sound event detection, Point labels, Weak la-
bels, Deep learning

1. INTRODUCTION

Sound Event Detection (SED) is a task of identifying a class of
sound events and estimating the time position (i.e. start and end)
of each occurrence of that class in an audio recording. Automatic
SED is an essential task in many areas that require audio-based
understanding of the environment. Applications include detecting
source of noise in cities [1], identifying bird species singing in na-
ture recordings [2], and gunshot detection in city recordings [3].
Deep neural networks have been successfully applied to recent SED
systems [4, 5, 6] and are the current state-of-the-art.

The typical approach to training automatic SED systems is su-
pervised machine learning. For SED systems to be maximally ef-
fective at labeling sound events and their onset/offset times within
a recording, it needs to be trained on audio data with time-coded
labels that indicate start and stop times of sound events (strongly la-
beled data). However, manually annotating each sound’s onset and
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Figure 1: Examples of different types of audio annotation. Strong
labels contain names of sound events and their time information.
Weak labels only have clip-level presence or absence of events with-
out their timing information. Point labels contain names of sound
events at a single time point per sound event instance within a
recording. The position of each point can vary within each instance.

offset within a recording is a very time-consuming task. It often re-
quires repeated listening and adjusting of label time boundaries on a
visual interface [7]. Moreover, building deep learning models usu-
ally requires lots of training data (e.g. tens of thousands of labeled
audio files). This imposes a large burden on human annotators.

As a result, models that can be trained on weakly labeled data
have obtained much attention for sound event classification and de-
tection [8, 4, 9, 10, 11]. Weakly labeled data names the sounds
within an audio recording without specifying anything about onset
or offset times (e.g. “there is a dog bark somewhere within this
30-second recording of a park scene”). Collecting weak labels is
easier, since the human annotator does not need to indicate the ex-
act time boundaries of events, which takes a lot of time. To collect
weak labels, one might just need to listen to a sound clip once and
record what events are in the clip [12]. Models trained on weak la-
bels, however, typically do not achieve the performance of models
trained on strongly labeled data.

In this paper, we introduce a new type of audio labeling, called
point labeling which contains more information than weak labels,
but still takes less human time to produce than strong labels. We
also present a SED model that can be trained on point-labeled train-
ing data and show that its performance is similar to the performance
of the strong model.

Our contributions are the following. First, we introduce a new
type of sound event labeling, point labeling, which (to the best of



2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 20-23, 2019, New Paltz, NY

label
C1

1
1

1
T

Encoding

C2

C3

C1

C2

C3

0  0  0
0  0  0
0  0  0

0  0  0
0  0  0
0  0  0

0  0  0 ∙∙∙
0  0  0 ∙∙∙
0  0  0 ∙∙∙

0  0  0 ∙∙∙
0  0  0 ∙∙∙
0  0  0 ∙∙∙0

0
0
0

0
0

Figure 2: Examples of how to encode point labels to compute point-
label loss. Given our model architecture, each time segment of en-
coded point labels covers 1/3 seconds of an input recording.

our knowledge) has not been addressed in prior works on audio
labeling. Second, we present a new method to train a machine
learning model (in this case, a Fully Convolutional Network) on
the point labeled audio data. Third, we present a strategy to auto-
matically expand point labels so they can cover a greater portion of
a sound event, which should lead to performance improvement on
SED tasks. Finally, experimental results show that a model trained
on point-labeled audio data significantly outperforms one trained on
weak labels and achieves comparable results to a model trained on
strongly labeled data.

2. POINT LABELS

Figure 1 shows an example of strong labels, weak labels, and point
labels. Strong labels contain names of sound events and their tem-
poral boundaries. Collecting strong labels is very time-consuming.
Specifically, finding the correct onset and offset of each event in a
polyphonic environment requires a lot of human effort [13]. Weak
labels only indicate the presence or absence of sound events within
an audio clip, without their temporal location within a recording.
Weak labels are relatively easy to collect. A human annotator just
needs to judge whether or not a target sound event is at all present
in the recording. When modern SED systems are built on a weakly
labeled dataset, a multiple-instance learning (MIL) formulation is
typically applied, assuming each class of sound events is present
during the entire clip if the event is present anywhere within the
clip (see Weak in figure 1).

Point labels contain names of sound events at a single time point
per sound event instance. A human annotator can indicate a sound
occurred (e.g., by clicking a mouse button or hitting a key) any-
where within the area of the sound event. We believe that this user
interaction takes much less time and effort than that required to find
and mark the exact start and stop times for each labeled sound in
a recording. In fact, in the right scenario, point labeling could take
as little effort as weak labeling, since the time/effort difference be-
tween clicking at the time one hears a sound (providing a point la-
bel) and waiting until the end of a recording before indicating pres-
ence of a sound (weak labeling) may be very small, if the labeling
task is structured appropriately.

2.1. Point-label loss

In this section, we present how to compute losses for a model when
point labels are available. To compute the point-label loss, Lpoint,
point labels of each recording needs to be encoded in the form of
an output matrix of a SED model, Ŷ ∈ RC×T where C is the num-
ber of classes and T is the number of time segments. Ŷ contains

class probabilities for each segments. Let Y p ∈ {0, 1}C×T be the
encoded point labels of a recording. If a point label of the event c
is located at the t-th time-segment, then 1 is assigned to Y p

c,t, oth-
erwise 0 is assigned to it. Figure 2 shows an example of the point
label encoding when the number of classes C is 3.

The encoded point labels Y p only contain information of the
presence of an event, not absence of an event, which means that
some of 0s in Y p might be false-negative labels. Therefore, we
should not compare Y p directly to an estimate of the label matrix,
Ŷ , to compute loss. Instead, we first multiply Ŷ by Y p to filter out
any prediction probabilities that are not related to point labels (i.e.,
presence of events). As a result, we define point-label lossLpoint as
binary-cross entropy between (Ŷ �Y p) and Y p, where� indicates
element-wise multiplication.

This has the effect of only computing loss on the time-segments
where there is a point label. This means that most of the audio in a
training example is not trained on. Rather than simply ignore that
audio, we combine a weak loss Lweak function and point-label loss
Lpoint in training. The weak loss Lweak is binary cross-entropy
loss between weak labels, y ∈ {0, 1}C and clip-level predictions,
ŷ ∈ RC , where C is the number of classes. Weak labels are ob-
tained by treating point labels as clip-level ground truth labels. The
clip-level predictions from the model are obtained by applying time
frame-wise max pooling operation on the model’s output Ŷ (i.e.,
segment-level predictions).

Finally, our model is trained by minimizing the following loss:

Loss = (1− α)Lweak(y, ŷ) + αLpoint(Y
p, Ŷ � Y p), (1)

where α is a hyper-parameter to determine the contribution of each
loss to the final loss.

2.2. Expanding point labels

While point labels contain time information of sound events which
weak labels do not have, there is still a gap between strong labels
and point labels. A single point label encoded for a SED model
only covers a single time-step. In our experiment, given our model
architecture, one time-step lasts 1/3 of a second. However, many
real-world sound events are longer than 1/3 of a second. If we
can expand point labels to label more adjacent time frames, we can
improve the advantage point labels have over weak labels. However,
if we expand too far, we may label adjacent segments where the
labeled sound does not occur, creating false-positive “ground truth”
labels that would harm learning. We now present a systemic way of
expanding point labels. The idea is to measure similarities between
a point labeled segment and its neighbor segments, and copy the
point label only to similar neighbor segments.

To measure similarities between segments, we first build a SED
model on a training set with only weak labels (i.e., weak model).
Note that this training set is the one that the point model is trained
on later. We then apply this weak model to label each audio clip
in the training set at the segment level (1/3 of a second) to ob-
tain segment-level class probabilities for each training example (i.e.,
Ŷ ). The class probabilities for each segment can be thought of as
feature embedding where the similarities between segments can be
measured. Figure 3 shows an example of the proposed point label
expanding method. For each point-labeled segment, we measure
cosine similarity between that segment’s class probabilities and the
class probabilities of the segments immediately before and after it.
If a neighbor’s similarity is above a user-adjustable threshold (0.5
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Figure 3: An example of expanding point labels to similar neighbor
segments.

in our experiments), the point label is copied to that neighbor. This
process is recursively applied to each neighbor segment that falls
above the similarity threshold, until a segment with similarity less
than a certain threshold is found.

This similar segment picking strategy is very useful, since the
positions of point labels can vary with different human annotators.
Regardless of the positions of point labels, this method successfully
expands labels in a way that limits false-positive labels. In our ex-
periments, we set the point labels at random locations within an
event to reflect a real-world scenario.

3. EXPERIMENTS

We now present an experiment designed to shed light on the efficacy
of point labels for providing a training signal to a deep model for
sound event detection. If point labels prove more effective than
weak labels, this indicates such labels have the potential to be an
effective alternative labeling method that combines the advantage of
strong labels (accurate labeling at fine time granularity) with weak
labels (easy to create).

In the experiments, we train models on point-labeled data,
weakly-labeled data or strongly-labeled data. We use weak loss
Lweak for the weakly labeled SED model. For strong models, we
encode the strong label matrix Y s in the same way as point label
encoding, but with the exact time boundary information of events
and compute loss between Ŷ and Y s. We use binary cross-entropy
to compute the loss for weak, strong, and point labels.

3.1. Model architecture

We use the same model architecture to learn from weak, strong,
and point labels. Table 1 shows the architecture of our model. It is a
fully convolutional network consisting of 8 convolutional layers and
takes as input a log Mel-spectrogram of a variable length audio clip.
Convolution operations for each layer are denoted as Conv (the size
of filters, the number of filters) in the table. The number of filters on
the last layer depends on the number of classes in the training data.
Strides of all the convolutional layers are set to 1. Zero-padding
with a size of 1 is applied to layer-1 to 6.

Table 1: Model architecture. *MP: 2D-Max Pooling (kernal size:
2 × 2, stride: 2), *N: the number of classes in the training dataset
(N=10 in our experiment). The output shape column shows the size
of tensor from each layer, given a 10-second recording as input.

Layers Components Output shape

Input Mel-spectrogram 998×64
Layer-1 Conv (3×3, 64)→ Relu→MP 499×32, 64

Layer-2 Conv (3×3, 128)→ Relu→MP 249×16, 128

Layer-3 Conv (3×3, 256)→ Relu 249×16, 256

Layer-4 Conv (3×3, 256)→ Relu→MP 124×8, 256

Layer-5 Conv (3×3, 512)→ Relu 124×8, 512

Layer-6 Conv (3×3, 512)→ Relu→MP 62×4, 512

Layer-7 Conv (2×2, 1024)→ Relu→MP 30×1, 1024

Layer-8 Conv (1×1, C)→ Sigmoid 30×1, C

Given a recording, the network outputs a matrix Ŷ ∈ RC×T

where C is the number of classes and T is the number of time seg-
ments, which represents class probabilities for each time segment.
T depends on the input audio length. Table 1 also shows an example
of output shapes from each layer. Given a 10-second recording, the
network outputs Ŷ (C × 30 matrix) where each segment represents
class probabilities for 1/3 seconds of audio.

3.2. Dataset and performance metric

We evaluate models on URBAN-SED dataset which contains
10,000 soundscapes generated using the Scaper soundscape syn-
thesis library [14]. We chose the dataset because it contains strong
labels of all the soundscapes, which enables us to generate point la-
bels as well as weak labels. Each file in the dataset is 10 second long
(about 28 hours in total) and contains between 1 to 9 sound events
from 10 classes in the UrbanSound8K dataset [15]. The 10 sound
classes are the following: air conditioner, car horn, children play-
ing, dog bark, drilling, engine idling, gunshot, jackhammer, siren,
and street music. The dataset is pre-divided into train, validation,
and test sets containing 6000, 2000, and 2000 files respectively.

We generated point labels for training data. In this work, each
time segment of the ground truth label matrix Y covers 1/3 seconds
of an input recording. We split the input audio into 1/3 second seg-
ments and encoded the point labels for each segment. The position
of point labels within a sound event was set randomly (random se-
lection from a set of points on the 1/3-second grid for an event) to
reflect the real annotation scenario where different human annota-
tors might choose different locations for a point label.

In this work, we assume that only a single point label per sound
event is collected, although we believe that multiple point labels
per event should not hurt the performance and could lead to further
performance improvement.

To measure the performance of the sound event detection (SED)
models, we compute segment-based F1 score and Error Rate (ER)
with the segment granularity of 1 second, which are official evalu-
ation methods in the DCASE challenge [16], an annual evaluation
of SED models. F1 score is computed based on true-positive, false-
positive, and false-negative values of every class at every second
over the testing set. ER measures the amount of errors in terms
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Table 2: Segment-based F1 score, Precision, Recall (higher is bet-
ter for all three), and Error Rate (lower is better) for each model.
Segment size is 1 second.

Model F1 Precision Recall ER
Weak 0.582 0.795 0.459 0.568

Strong 0.639 0.675 0.607 0.519

Point single 0.612 0.763 0.511 0.533

Point expanded 0.638 0.684 0.597 0.523

Strong (McFee et al.[4]) 0.551 0.693 0.458 0.642
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Figure 4: Class-wise F1 scores.

of insertions , deletions and substitutions. More details about the
metrics for SED can be found in [16].

3.3. Training and prediction

Each audio file was resampled to 16kHz mono and represented by
a log-scale Mel-spectrogram with 64 Mel bins, a window size of
25 ms and hop size of 10 ms. All models were trained on mini-
batches of 32 examples using Adam optimizer with a learning rate
of 0.0001. The training stopped if the model performance on the
validation set did not improve for 20 epochs. For the point label
model, we also tested different α values in the loss function (see
equation 1) and models with α = 0.8 showed the best performance.

We also applied transfer learning because 6,000 training ex-
amples are relatively small dataset given our model architecture.
When training our models, we initialized the network with the set
of weights from a VGGish pre-trained model [17] that has been
trained on 3,000 sound classes of 8 million YouTube videos. Lay-
ers 1 to 6 were initialized by with the weights from the VGGish
model. The rest of the layers were randomly initialized. In train-
ing, the first three layers were fixed and the rest of the layers were
fine-tuned on the training set. To obtain labels from the network
output, we applied the likelihood threshold 0.5 to class probabilities
to determine presences or absences of an event.

3.4. Results

We compared 2 variants of point models. Point-single model uses
only a single point label at a random position of an event. Point-
expanded uses the updated point labels expanded by our proposed
methods in Section 2.2. Both models were trained by minimizing
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Figure 5: An example of SED performed by weak model and Point-
expanded model

the loss function with α of 0.8 (see equation 1), which showed the
best performance among point models. We also built a Weak model
as our baseline and Strong model as the best possible model.

Table 2 shows segment-based F1 score with precision and re-
call and ER for each model. We can see that our two point models
outperform the weak model, which shows the point labels help mod-
els localize sound events more accurately. Finally, the result shows
that the proposed point label expansion improve the performance
even further. Point expanded model achieved F1 = 0.638 and
ER = 0.523 which is nearly identical to our strong model’s score
(F1 = 0.639, ER = 0.519). We achieved this performance gain
even though we randomly set the positions of point labels, which
proves that the point models are robust to the position of point la-
beling which might vary in real annotation scenario. To provide the
current state of the art as context, we also show results on the same
data from a strong recent model by McFee et al. [4]. All models
showed a better F1 score than McFee et al. We guess this is due
to a more capable network architecture and transfer learning from a
model pre-trained on a much larger dataset.

Figure 4 shows class-wise F1 scores of weak and point-
expanded models. We can see that the point-expanded model out-
performs the weak model for most classes of the sound events.
Figure 5 visualizes an example of the predictions performed by
the weak and point-expanded model given a 10 second of record-
ing from our testing set. The recording contains 4 different sound
events. As shown in the figure, the point model made more accurate
predictions of temporal boundaries of events.

4. CONCLUSION

We introduced a new way of labeling sound events, point label-
ing which is relatively easier to perform than collecting strong la-
bels, but can provide more information about temporal locations of
events than weak labels. We presented a training method of SED
models on point-labeled audio data and showed that the model sig-
nificantly outperforms weak models and is comparable to a model
trained on strongly labeled data.
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