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ABSTRACT

Markov chain models have been widely used for
algorithmic composition and machine improvisation. In
this paper, we introduce a probabilistic prediction model
of rhythmic characteristics of Markov chain-based note
sequences. For this purpose, we propose an algorithm to
generate a revised Markov chain model and calculate the
onset probabilities of notes at each onset position in one
measure. As an application of this algorithm, we present
an interactive improvisation system which uses a
customized syncopation index as an input parameter and
allows the user to control the level of syncopation and
rhythmic tension in real-time.

1. INTRODUCTION

Auto-generation of music with mathematical algorithms
such as neural networks, genetic algorithms, generative
grammars and cellular automata, has been researched for
several decades. Markov chains are also widely used in
algorithmic composition and machine improvisation
system because it is computationally cheap to learn the
style of existing music and imitate the music with simple
probabilistic calculation [5, 7]. Markov chains imitate a
style of sequence of musical events such as notes and
chords with transition probabilities between events. This
probability-based learning and creation enable us to
generate more creative musical outcomes [1, 10].

Despite of the advantages of Markov chains, they are
not suited for interactive control. Overcoming this
drawback, Pachet et al. suggested methods to control the
generation of event sequences from Markov chain
models for interactive applications considering
constraints for user inputs. But they focused on only
pitch, not rhythmic factors [8, 9].

This paper addresses the issue of controlling rhythm
of note sequences generated from a first-order Markov
chain which is the simplest type. Our approach is to
predict the onset probabilities of musical notes and to
select the initial state of the Markov chains depending
on the probabilities. As an application of the algorithm,
we present an interactive improvisation system built in
Max/MSP where users can control the amount of
syncopation of the rhythm in real-time.
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2. RHYTHM GENERATION AND
ANALYSIS WITH MARKOV MODELS

Figure 1 illustrates an example of a simple first-order
Markov chain for rhythm generation, which can be
derived from the user’s input melodies or sample pieces.
Each node represents the duration of a note, and
transition probabilities between nodes show their mutual
dependencies. For example, a quarter note is followed
by an eighth note with the probability 0.5 and, in turn, an
eighth note is followed by an eighth rest with the
probability 0.3. The outgoing probabilities from each
state must sum to 1.
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Figure 1. An example of a first-order Markov
chain for rhythm generation

The Markov chain model is used not only to imitate a
style of existing pieces and generate melodies, but also
to calculate probabilities of future events using transition
matrices, which means that we can predict the possibility
of occurrence of the n th note from the initial note [4].
For example, if each state (or node) of a Markov chain
denote pitch, we can calculate the probability that the
pitch of the third note will be E or C. However, if it is a
rhythm model involving the duration of notes shown in
Figure 1, it is hard to predict the rhythmic characteristics
per bar. This is because the onset position of each note
is affected by the durations of their preceding notes.
Figure 2 illustrates the problem. Depending on the
combination of the first two events (either notes or rests)
the third event is in a different position. With the simple
Markov chain model in Figure 1, we can only calculate



the probability that the third event is an eighth note, not
the probability that it occurs at a specific position. But
we need the latter to predict rhythmic characteristics in
one measure.

Figure 2. The onset positions of the third event
vary with the durations of preceding events.

3. THE ALGORITHM

3.1. Revised Markov Chain Model

In order to calculate the probability of each state at a
specific position in a bar, the simple Markov chain
above needs to be revised. Figure 3 illustrates the
structure of a new Markov chain model modified from
the original one in Figure 1. To generate this model, the
number of “unit pulses” in one bar needs to be defined.
Here, we divide one measure into 8 beat pulses and,
assuming 4/4 meter, the duration of a unit pulse
corresponds to an eighth note. Compared to Figure 1,
nodes whose duration is longer than one unit pulse are
divided into multiple nodes so that each state can take
only the unit duration, an eighth note.
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Figure 3. Revised Markov chain model (modified
from Figure 1).
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Each state is denoted as (a, b): the first element a
shows the type and duration of the event (e.g., N, or R,
where N: note, R: rest, and d: duration) and the second
element » means the “counter” parameter ranging from 1
to the duration of the event. For example, the dotted
quarter note has three states, (N3, 1), (V3 2), and (N, 3).
The transition probabilities to newly added nodes (gray-
colored in Figure 3) are set to 1 because these events
always occur after the first state of each event.

3.2. Onset Probability

The purpose of the revised Markov chain model is to
derive state probabilities of each onset position in one
measure from a simple Markov chain model. The state
probabilities (k) are calculated using equation (1).

(k) = m(0)xT*! (1)

In the equation, & denotes time step indicating onset
positions from 1 to 8 and #(0) means initial state. T is a
transition matrix modified from the transition matrix of
simple Markov chains in Figure 1 by a simple procedure.
Firstly, the new transition matrix is initialized as a zero-
matrix. If the size of previous transition matrix is (N x
N), the size of revised transition matrix is (d; + -+ dy)
x(d; + - + dy), where dy is the duration of note or rest
N. Their transition probabilities, S’ are derived using
equation (2) and (3), where S denotes transition
probabilities of the simple Markov model.

S‘(a,b),(a,bJrl) =1 for a=1,...,N,b=1,...,da -1 (2)
S|(i,da),(j,1) :Sij for I :1,...N,j=1,..N (3)

Now, we can calculate onset probabilities at each
position in one measure. The probability that note a
occurs at position k can be calculated by following
equation (4).

Pa(k)=n(k),, foragrest 4)

Finally, the onset probability at position k, P,,.(k) is
derived from equation (5).

N;
ponset(k) = zn(k)a,l for a ¢ rest, 4)
a=N,;

where ¢ is the total number of notes.

Figure 4 is onset probability distribution which allows
us to predict how the rhythm will be generated from the
Markov chain in Figure 1. We also know that the
probabilities change depending on the initial events.

4. APPLICATION

As an application of the algorithm, we developed an
interactive improvisation system where users can control
the amount of syncopation of the rhythm in real-time.
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Figure 4. Onset probability distribution in one measure
with different initial states.
4.1. Syncopation Index

Syncopation is one of the rhythmic characteristics which
produce rhythmic tension. Many researchers have
explored the method of measures and perception of
syncopation [3], and it has been used as user’s input
parameter of interactive music system [11].
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Figure 5. A rhythm tree and syncopation index in
4/4 meter [6].

In order to calculate syncopation value with our
probabilistic model, we follow the Longuet-Higgins and
Lee’s definition of syncopation [2, 6]. They defined
metrical tree having weight values of zero or less to
calculate syncopation index (figure 5). The weights
describe how much the metrical positions contribute to
the measure’s rhythmic feeling. According to their
papers, syncopations occur when a rest (or tied note) is
preceded by a note of lesser weight, and the difference
in weights of rest and note means each syncopation
value. Thus the sum of all syncopation values is the
syncopation index for the rhythm. For example, in
Figure 5, the rhythm has two syncopations. The first
syncopation value is 1, and the second one is 2. So the
syncopation index for the rhythm equals to 3 (more
detailed algorithm can be found in [2]).

We use this concept to probabilistically predict
syncopation index of note sequences to be generated
from Markov chains. In our model, comparing onset
probabilities for each pair, we assign a rest at the
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position which has less onset probability, and another
position is assigned by a note. For example, given the
onset probabilities in figure 4, when an initial event is an
eighth note, a note at onset position 2 and a rest at
position 3 are assigned. Thus, using the same calculation
method shown in figure 5, its syncopation index can be
predicted as 3.

As shown in this example, we can predict
probabilistic syncopation index with different initial
states, which means that syncopation indices can be
user’s input parameters in Markov chain-based
improvisation system.

4.2. Max/MSP External Object

The algorithm was implemented in one Max/MSP
external object named MC OnsetProb. The object
receives a list of sets of the transition matrix of simple
Markov chain model, and it converts them to the
transition matrix for revised Markov chain model. It also
calculates the onset probabilities at each pulse and
syncopation index. The output of this external object is
a list of sets of onset probability, syncopation index, and
related initial state.

4.3. Real-time Improvisation System

The system overview of Markov chain-based
improvisation system is shown in Figure 6, which
consists of three modules, (1) Markov Chain Analysis,
(2) Syncopation Index Calculation, and (3) Melody
Generation.
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Figure 6. System overview of improvisation
system



Firstly, a user inputs monophonic melody with an
external midi device. The rhythm of the melody is
quantized to eighth-note level and first-order Markov
chains for pitch and rhythm are constructed. Secondly,
the simple Markov rhythm model is converted into a
revised Markov chain model, and the onset probabilities
and syncopation index are calculated. Lastly, a user
selects one syncopation index among all possible
candidates of the syncopation indices which are derived
from the second module. The chosen syncopation index
determines the initial state in the Markov chain model.
After all these procedures, new melody can be played.
While music is playing, a user can change syncopation
index, which means that the amount of syncopation can
be controlled in real-time. When a user selects one of
syncopation indices, the changed rhythm starts from the
next measure. For the real-time controllable feature, we
made the restrictions: first event (note or rest) at onset
position 1 in every measure is always the initial state and
the last event should fit in the bar even if it is not
finished.

Figure 7 shows a screenshot of the Max/MSP patch.
This also consists of three modules same as Figure 6.
Users can select syncopation index by pressing bang
button while playing (A video excerpt of the system is
available at

http://www.bongjunkim.com/work/markov-chain ).
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Figure 7. The screenshot of improvisation system
built in Max/MSP patch.

5. CONCLUSIONS

This paper presented a probabilistic model for rhythms
in Markov chain-based note generation, and an
interactive improvisation system was built using
Max/MSP. In order to calculate the onset probabilities, a
revised Markov model was suggested and the
syncopation index in one measure was derived from the
onset probabilities at each metrical position. Our model
enables users to probabilistically control rhythmic
tension when a simple Markov chain generates melodic
sequences.

As future works, we need to evaluate our model
through users’ response to the rhythmic changes and
compare with other models. This paper also can be
extended for higher-order Markov chain model, and we
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will continue our research on probabilistic rhythm
analysis for algorithmic composition and machine
improvisation.
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