
NORTHWESTERN UNIVERSITY

Sound Event Annotation and Detection with Less Human Effort

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Bongjun Kim

EVANSTON, ILLINOIS

June 2020

2

c© Copyright by Bongjun Kim 2020

All Rights Reserved

3

ABSTRACT

Sound Event Annotation and Detection with Less Human Effort

Bongjun Kim

Sound is one of the most important mediums to understand the environment around us.

Identifying a sound event in prerecorded audio (such as a police siren, a dog bark, or a

creaking door in soundscapes) leads to a better understanding of the context where the

sound events occurred. To do so, we record a sound scene, search for sound events of

interest in the recording, determine their time positions (i.e., start and end), and give them

meaningful text labels.

A typical way for a human to find and annotate a sound event of interest in unlabeled

audio recordings is simply to listen to the audio until one hears it and finds accurate onset

and offset of the event. This sound event annotation process is very labor-intensive. My

research goal is to reduce the human effort required for sound event detection and annotation.

In this dissertation, I present methods to speed up the sound event annotation process.

My specific goals are divided into two, in terms of what the annotated data is used for. First,

sound event annotation is essential to quantify the contents of a recorded acoustic scene for

a direct analysis. For this purpose of sound event annotation, I focus on building a system

that helps a user to find sound events of interest and annotate them as quickly as possible.

4

Secondly, sound event annotation is also one of the essential steps to provide the training

data needed for building an AI machine that automatically identifies sound events (e.g.,

sound-based surveillance systems). My focus for this situation is to help human annotators

spend less time labeling training data, but still build a high-performance machine learning

model with less annotation effort.

To achieve these goals, I present a human-in-the-loop system for sound event annotation,

I-SED that lets users find sound events of interest roughly twice as fast as manually labeling

the target sounds. Then, I present methods that can solve the problem where query-by-

example search of I-SED could fail if the initially selected region (i.e., a query) contains

multiple sound events. The solution is a new way of improving query-by-example audio

search using user’s vocal imitations (i.e., Imitating what they do or do not want in a query

recording) which would help a user to find target sound events quickly. Finally, I present a

new type of audio labeling, called point labeling, which makes it easier for human annotators

to provide ground truth labels to train a machine learning sound event detection system.

Point labels provide more information than weak labels, but are still faster to collect than

strong labels. I show that a model trained on point-labeled data is comparable to one trained

on the typical type of labeled data, strongly labeled data that is harder to collect.

This dissertation will be a valuable resource for researchers and practitioners who are

looking for new annotation methods under a limited budget. I expect that it will facilitate

the process of sound scene understanding of humans as well as AI systems.

5

Table of Contents

ABSTRACT 3

List of Tables 7

List of Figures 9

Chapter 1. Introduction 16

1.1. Background and Motivation 16

1.2. Problem Statement 22

1.3. Summary of Contribution 25

1.4. Broader Impact 28

Chapter 2. A human-in-the-loop system for sound event annotation 30

2.1. Introduction 30

2.2. Related works 31

2.3. Interactive sound event detection and annotation 34

2.4. Interface design and implementation 41

2.5. Evaluation 42

2.6. Discussion 62

2.7. Conclusions 64

Chapter 3. Improving sound search using vocal imitation 65

3.1. Introduction 65

6

3.2. Method 71

3.3. Dataset: Vocal Imitation Set 80

3.4. Evaluation 89

3.5. Conclusion 99

Chapter 4. Sound event detection using point-labeled data 102

4.1. Introduction 102

4.2. Point Labeling 106

4.3. Training a SED model on point-labeled data 108

4.4. Experiments 115

4.5. Conclusion 127

Chapter 5. Conclusion 129

5.1. Limitations and future work 132

References 135

7

List of Tables

3.1 The number of classes, listener-vetted imitations, and original recordings (including

reference recordings) for each of the first-level categories in Vocal Imitation Set 88

3.2 MRRs of the three retrieval systems on 6 sub-categories of Vocal Imitation Set.

The number of queries (vocal imitations) and items (real sounds) to search through

for each category is following: Animal (587 queries, 31 items), Human sound (714

queries, 38 items), Music (1247 queries, 65 items), Sound of things (2448 queries,

134 items), and Source-ambiguous (354 queries, 20 items). 93

3.3 Mean Recall@10 of within-category QBE retrievals for the five different search

scenarios. The Ensemble method was used to update the search results with vocal

imitations. 96

3.4 Max-MRR of within-category QBE retrievals for the five different search scenarios.

The Ensemble method was used to update the search results with vocal imitations. 97

3.5 Recall10 comparison between the two methods to update the initial search result

using vocal imitations: Ensemble and Query expansion method presented in

Section 3.2.2. 98

4.1 Model architecture. *MP: 2D-Max Pooling (kernal size: 2× 2, stride: 2), *N: the

number of classes in the training dataset (N=10 in our experiment). The output

8

shape column shows the size of tensor from each layer, given a 10-second recording

as input. 116

4.2 F1 score, precision, and recall (higher is better for all three) for each model. Weak

and Strong models are trained by minimizing weak loss and strong loss respectively.

All point models are trained by minimizing the loss function (Equation 4.4) which

is the combination of weak loss and point loss with α of 0.8. *Micro F1 scores are

not available in [68]. 123

9

List of Figures

1.1 Examples of sound event annotation. Each sound event of interest is labeled with

a text tag and its temporal location within a recording. 17

1.2 Typical steps of a supervised machine learning process. Labeling data is an

essential step for training supervised machine learning models. The performance

of a trained model is affected by the quality and quantity of labeled data. 18

1.3 An example of sound event annotation tools: Audacity [64]. A user can load a

label track in addition to an audio track and add a text tag with its temporal

locations (onset and offset of a sound event). 19

1.4 Audio visualization in Audacity: a waveform (the first track) and a magnitude

spectrogram (the second track). A waveform represents amplitude of audio

signal over time. A magnitude spectrogram represents how energies of different

frequencies of a sound change over time. Its horizontal dimension is time, the

vertical dimension is frequency. Frequency can be thought of as a pitch of a sound.

The color of each time-frequency point indicates the strength of the energy at the

time-frequency bin. Red means high energy (loud sound), blue means low energy

(quiet sound). 20

1.5 Magnitude spectrograms of humans couphing (a), laughing (b), and a mixture of

the two. 21

10

2.1 System overview of the human-in-the-loop sound event annotation. 35

2.2 Audio feature extraction for all segments of an audio file. MFCCs are extracted

frame-wise and pooled over each segment using the means and variances of both

the instantaneous and delta values. 37

2.3 As feedback, a user labels regions positive(blue)/negative(red), or changes the

time position and size. 40

2.4 The region A and C (gray) are the machine’s suggestions. A user listened to them,

changed the temporal location of A and adjust boundaries of C, and labeled them

positive (A* and C*). Then the system automatically labels the region B and D

as negative since it is clear that they do not contain the target sound events. 40

2.5 Screenshot of the interactive sound annotator. 42

2.6 User interaction flowchart of the interactive annotator. 43

2.7 The proportion of target sound instances found as a function of time spent on

the task (quantized every 5 seconds) using two different interfaces, the proposed

interactive interface and the manual annotator. Here, N = 20, as each of 20

participants tried both interfaces in a session. (a)-(c): the proportion of examples

found as a function of time spent labeling for all classes (a), knock only (b), and

speech only (c). Lines indicate median, and dark and light bands of each color

show 75th and 25th percentile. (d): the performance of two different participant

groups: experienced and non-experienced. Lines indicate the median value of a

pair of each user group and interface. 51

2.8 User responses to questions about experience with each interface. Responses range

from 0 (strongly disagree) to 1 (strongly agree). N=20 for each box plot. 54

11

2.9 Comparison between survey responses from two different participant groups.

(a): response about the manual annotator. (b): response about the interactive

annotator Responses range from 0 (strongly disagree) to 1 (strongly agree). N=13

for non-experienced participants and N=7 for experienced participants. 55

2.10 Total time a participant (one participant is selected as an example) spent on the

task as a function of the total amount of audio verified/labeled. The interactive

system requires more time to label a fixed amount of audio than the manual

system. This interaction overhead partially offsets the speedup of the overall

task the interactive system provides by having the users label the most promising

segments of audio first. 58

2.11 Overhead ratio (interactive/manual) for 14 participants (Median: 4.22, mean:4.68). 59

2.12 The user simulation. The proportion of examples found according to the proportion

of audio the oracle evaluated. All sound events are detected by evaluating less

than 126 seconds of the audio (17.5% of the audio). 60

2.13 The machine-estimated user performance overlayed on the actual user data from

Figure 2.7(b) and (c). 61

2.14 There are two bottlenecks (Loop 1 and Loop 2) in the interaction flowchart of the

interactive annotation. 62

3.1 An example of the problem on a query containing overlapping sound events. Given

such a query, the retrieval system does not know which portion of the query is

relevant to a sound event that a user wants to search. 66

3.2 Magnitude spectrograms of humans coughing (a), laughing (b), and a mixture of

the two. 67

12

3.3 Magnitude spectrograms of humans coughing and laughing. The region associated

with human laughing are colored in dark red. 68

3.4 An audio embedding model maps recordings into the feature space in a way that

similar sound events are grouped together. This makes it easier to find similar

sound events to a query using a simple distance or similarity measure such as

euclidean distance or cosine similarity 72

3.5 The architecture of the VGGish model [38]. It consists of 6 convolutional layers

followed by 3 fully-connected layers. It takes a 1-second recording and output a

128-dimensional feature vector. The number of filters and their size information

of convolutional layers are denoted as (width × height, channels) in each layer

block. All convolution operations are performed with a stride of 1. MP indicates

max pooling operation with a kernel size of 2x2 and a stride of 2. Relu activation

functions are used for every convolutional layer. 73

3.6 The proposed CNN-based feature extractor. The information for each filter is

denoted as (width × height, channels) in each layer block. MP indicates max

pooling operation. Relu activation functions are used for every convolutaional

layer. Outputs from layer 5 and 6 are concatenated to build a single feature vector 75

3.7 A screenshot of the interface for the internal quality assessment 84

3.8 Histogram of maximum differences of quality ratings on a 100 point scale between

two presentations of the same pairing of reference and imitation recording (Mean:

7.63, SD: 10.96) 85

3.9 Relationship between self-satisfaction scores by imitators and quality assessment

by evaluators. 86

13

3.10 Histogram of quality assessment ratings to 5, 601 vocal imitations that were vetted

by evaluators (Mean: 60.3, SD: 25.3) 88

3.11 Query-by-Vocal imitation audio retrieval. A vocal imitation recording of a category

(e.g., Animal) is a query (e.g., a vocal imitation of a dog bark). Then, reference

recordings (real sounds) of the category become the database to search through.

The task is to find a real recording that is the most similar to a vocal imitation

query. 90

3.12 The experiment scenario to evaluate the effectiveness of user’s vocal imitations in

query-by-example audio retrieval. The database to search through includes sound

events that are similar (belonging to the same class) to sound events in a query.

The task is to find several sound events that are similar to the positive sound in

the query. If the 5 top-ranked items do not include sound events of interest, the

search results get updated by vocal imitations. 95

4.1 Examples of Sound Event Detection (SED). Given an audio recording and a fixed

set of sound classes, a SED system automatically identifies the classes of sound

events and estimate temporal locations (i.e. start and end) of the events within

the recording. There could be multiple sound classes overlapping each other (i.e.,

polyphonic environment) 103

4.2 For a machine learning model to learn a proper mapping function between an

audio signal and its label, each of training examples needs to be well-segmented

with correct onset and offset times of an audio event. Therefore, it requires

strong-labels of sound events in a recording. 104

14

4.3 Examples of different types of audio annotation. Strong labels contain names of

sound events and their time information. Weak labels only have clip-level presence

or absence of events without their timing information. Point labels contain names

of sound events at a single time point per sound event instance within a recording.

The position of each point can vary within each instance. 106

4.4 Examples of how to encode point labels to compute point-label loss. In this

example, three sound events are present at different time location within an audio

clip, which result in three point labels at three different time positions. It also

illustrates false-negative labels generated by the encoded point labels. 109

4.5 Summary of computing losses on point-labeled audio data during model training.

It is trained to minimize the combination of weak loss and point-label loss. *BCE

refers to Binary-Cross Entropy loss 112

4.6 An example of expanding point labels to similar neighbor segments. 114

4.7 An example of computing segment-based F1 scores with micro and macro averaging

on a 5-second audio clip. 119

4.8 An example of how a trained model performs sound event detection given a test

audio clip 121

4.9 SED performance of point models on the validation set with different alpha values.121

4.10 Two different ways of computing losses for weak model and strong models. Weak

losses Lweak is computed by the difference between clip-level predictions and weak

labels. Strong losses Lstrong are computed between segment-level predictions and

strong labels. 122

4.11 Class-wise F1 scores of weak and point-expanded models. 124

15

4.12 An example of SED performed by weak model and Point-expanded model for a

10-second audio clip in the testing set. In each figure, yellow bars represents event

activities of each class over time. The top figure shows the ground-truth labels.

The middle and bottom figures shows estimations from weak and point models. 125

4.13 SED performance of point models trained on different amount of point-labeled

data. The total number of training examples is 6,000. The proportion of

point-labeled training data increases by 20% (1, 200 examples) from 0 to 100%. 126

16

CHAPTER 1

Introduction

1.1. Background and Motivation

Sound is one of the most important mediums for us to understand the environment

around us. Identifying a sound event (such as a police siren, a dog bark, or a creaking door)

leads to a better understanding of the context where the sound events occurred.

To label sound events, people record a sound scene, search for sound events of interest in

the recording, determine their time positions (i.e., start and end), and give them meaningful

text labels. This task is called Sound event annotation. Figure 1.1 shows an example of

annotated sound events in a recording. Sound event annotation can be applied to many kinds

of audio, for many different purposes. Examples include speech diarization [85], labeling

music recordings by predominant instrument [28], labeling nature recordings with the species

of animals heard in the recording [61, 100], and identifying gunshots in city recordings [104].

Sound event annotation is essential to quantify the sound scene in a recording. Statistics

on annotated sound events are important information to understand an environment and

make a decision for many different tasks. For example, ecologists might want to know when

and how often a bird was signing in an environmental recording to understand bird migration

patterns around the environment. Language pathologists might be interested in how often

and how long their patients are exposed to a certain type of noise sound during a day. To

obtain such information, they need to record audio in a particular environment, search for

sound events of their interest in the recording and label them.

17

Bird#1 Bird#2 Bird#1

4s 8s 13s 20s 32s 34s

TV noise
Mom’s
speaking TV noise

1s 10s 15s 25s 30s 38s

Figure 1.1. Examples of sound event annotation. Each sound event of interest
is labeled with a text tag and its temporal location within a recording.

Sound identification and annotation of prerecorded audio are also essential for making

searchable audio content in many existing online multimedia (or audio) repositories that

contain a large amount of audio content. This is because it allows us to leverage all the work

done for text-based search and apply it to multimedia search. Example public repositories of

audio include the online music sharing service SoundCloud which contains over 200 million

tracks1, and the online audio sample library FreeSound which contains more than 400,000

audio files2.

The standard way of searching for audio in these online repositories is text-based search.

People search for audio with descriptive text metadata (text keywords associated with an

audio file or a sub-portion of the audio file). However, text-based search is not possible

when there is no tag provided for a relevant portion of the audio content. Machine-assisted

searching for sound events in a lengthy recording (e.g. a 24-hour long recording of a natural

1https://blog.soundcloud.com/2019/02/13/celebrating-the-200-millionth-track-uploaded-to-soundcloud/
2https://blog.freesound.org/?p=942

18

Data
Collection

Data
Labeling

Feature
Extraction

Model
Training

Model
Testing

Figure 1.2. Typical steps of a supervised machine learning process. Labeling
data is an essential step for training supervised machine learning models. The
performance of a trained model is affected by the quality and quantity of
labeled data.

scene) is currently practical only when time-coded labels have been added to the recording.

When this is not the case, then the audio must be annotated first.

Sound event annotation is also one of the essential steps for building an AI machine that

automatically identifies sound events (e.g., sound-based surveillance systems). A typical

approach to building such a system is supervised machine learning. The system learns a

function that maps audio data to a known sound event label so it can predict a label of

a new sound event. Therefore, in order to build such a system using supervised machine

learning, data labeling has to be performed before model training, as shown in Figure 1.2.

Recently, building systems for automatic sound object identification has obtained much

attention from both industry and the research community. They have put significant efforts

into sound event annotation to foster the development of the AI systems. Every year since

2016, the Detection and Classification of Acoustic Scenes and Events (DCASE) community3

has released annotated datasets for DCASE challenges [72] where researchers can develop and

evaluate computational scene and event analysis methods with the provided public datasets.

Google also has released AudioSet [29] containing a collection of 2 million 10-second sound

clips drawn from YouTube videos with their labels of 632 sound event classes. Sound of New

York City (SONYC) [5] is a noise monitoring project where large-scale audio data collection

and labeling have been performed.

3http://dcase.community/

19

Figure 1.3. An example of sound event annotation tools: Audacity [64]. A
user can load a label track in addition to an audio track and add a text tag
with its temporal locations (onset and offset of a sound event).

A typical way to annotate sound events of interest in a recording is to simply listen to

the audio until one hears them and determine the start and stop times of the sound events

(i.e. onset and offset of an event). For this task, one can use a visual interface where a user

can play an audio recording and add labels of sound events. Figure 1.3 shows an example

of sound event annotation using Audacity, which is an open-source digital audio editor. It

provides a visual annotation environment where a user can select a sub-section of an audio

track and add text-tags to the selected regions.

Labeling sound events of interest in a lengthy audio recording or in a large database of

unlabeled audio files is a very time-consuming task. For example, one might need to listen

to several seconds of a sound event to figure out it is the sound of a car passing by. This is

typically much slower than identifying objects in images (e.g., circle the cat in this image).

Images are viewable all at once and it is easy to scan one’s eyes in any direction and at

any speed. However, to successfully identify a sound object, one listens start-to-finish at a

20

Figure 1.4. Audio visualization in Audacity: a waveform (the first track) and a
magnitude spectrogram (the second track). A waveform represents amplitude
of audio signal over time. A magnitude spectrogram represents how energies
of different frequencies of a sound change over time. Its horizontal dimension
is time, the vertical dimension is frequency. Frequency can be thought of as a
pitch of a sound. The color of each time-frequency point indicates the strength
of the energy at the time-frequency bin. Red means high energy (loud sound),
blue means low energy (quiet sound).

fixed rate. Moreover, marking the exact start and stop times (i.e., onset and offset) of a

sound event might require one to listen to certain regions of the recording multiple times

[49]. While many audio annotation tools support a visual representation of audio such as a

waveform and a magnitude spectrogram (see Figure 1.4), it is almost impossible to correctly

identify sound events only by looking at those visual representations of audio. Therefore,

listening to audio is an essential step to fully identify sound events, which makes sound event

annotation labor-intensive.

21

0.2 0.4 0.6 0.8 1.0 1.2
Time(sec)

0

2500

5000

7500

10000

12500

15000

17500

20000

Fr
eq

ue
nc

y

(a) Cough

0.25 0.50 0.75 1.00 1.25 1.50
Time(sec)

(b) Laughing

0.25 0.50 0.75 1.00 1.25 1.50
Time(sec)

(c) Cough + Laughing

Figure 1.5. Magnitude spectrograms of humans couphing (a), laughing (b),
and a mixture of the two.

Identifying sound events and finding their correct time-boundaries become more difficult

when multiple sound events are fully overlapped (e.g., a cough is concurrent with television

noise and the sound of a blender). Figure 1.5 shows spectrograms of two overlapping sound

events (coughing and laughing). This is not occlusion. This is a case of simultaneous

overlapped sounds. A visual analog would be observing something through a reflective glass

window where two overlapping images occur, the one reflected in the window and the one

visible through the window. Overlapped sounds are far more common than isolated sounds

in the real world and marking the start and stop of sounds that are overlapped may impose

more cognitive load on a human annotator.

This dissertation aims to reduce the human effort required for sound event

annotation. To do so, I set up two different goals depending on what the annotated

data is used for. The purpose of sound event annotation can be either to directly use the

annotation to solve a problem or to build machine learning models. One might label audio

to directly quantify sound events of interest in a recording and use the information for a

direct analysis. In this case, the goal is to collect accurate human-labeled data quickly.

Alternatively, one might annotate audio as a precursor to training a machine learning model

22

for automatic sound recognition. In this situation, the goal is to build a high-performance

machine learning model with less human annotation effort.

1.2. Problem Statement

As mentioned in the previous section, a typical way for a human to annotate a sound

event in an audio recording is simply to listen to the audio until one hears it. Done this

way, human effort for annotation would linearly increase with the amount of audio one needs

to listen. In this section, I address this problem in more detail by examining two different

scenarios depending on what the annotated data is used for: 1) quantifying sound scenes for

a direct analysis which requires very accurate labels, 2) building a machine learning model

on the annotated audio data.

1.2.1. Problems with collecting ground-truth labels for direct analysis

Imagine you are a language pathologist and trying to analyze the relationship between chil-

dren’s language development and their listening environment. You collect days of audio files

recorded from a wearable microphone installed on a patient. You listen to the audio tracks

and found an interesting class of sound events (e.g. their mother speaking to them) which

might affect children’s language development. It occurs repeatedly in their days of record-

ings. Now you are interested in how often and when the sound event occurred. This requires

finding all the temporal locations of this class of sound events within the recordings.

Searching through lengthy audio files manually is very time consuming and a natural

thought is to automate the process. One can build a machine to automatically identify var-

ious sound events and let the machine perform the annotation task. However, the typical

approach to building automatic sound recognition systems uses supervised machine learning

23

algorithms that still require annotated training audio data. Examples include neural net-

works [81, 38], Gaussian Mixture Models (GMM) [109], decision trees [60] and Support

Vector Machines (SVM) [84]. While, as mentioned in the previous section, there are public

datasets available (e.g., DCASE dataset, AudioSet), these datasets do not cover every ar-

bitrary class of sound events (e.g., a particular children’s mother speaking to them). If the

existing repositories do not contain labeled sound events of current interest, we cannot build

a machine to identify the sound events. This problem remains the same even when one uses

pre-trained models to annotate audio or automatic annotation tools because the models or

tools have been built to detect a finite set of pre-defined sound classes. It might be difficult

for one to collect enough training examples of the sound class that you just found interesting.

Moreover, automatic annotation is not the best solution when you need to make sure

all the collected sound events are labeled with correct class names and accurate onset and

offset (i.e., human expert-level accuracy of labeling). There is still a gap between human

and machine abilities to identify sound events. For example, the top-ranked audio tagging

system in the recent DCASE challenge task5 4 produces predicted labels that diverge from

the human-generated labels by an F-score of 0.26 on the DCASE challenge dataset containing

8 different classes.

The scenario and problems described above show us that there are situations where

manual audio search is required. However, even though manual sound event annotation

by human experts leads to more accurate results than using automatic detection systems,

hand-labeling events in recordings is prohibitively labor-intensive. For example, to monitor

how long a patient was exposed to a certain type of a sound event during a day, one needs to

listen to 24 hours of audio. Typically, this would take more than 24 hours to label. Although

4http://dcase.community/challenge2019/task-urban-sound-tagging

24

one could listen to a recording at higher playback speed (e.g., 2x or 3x), it might make it

harder to find accurate time boundaries of an event which often requires repeated listening

to a small-time region in a recording [49]. In this dissertation, I present new methods

to speed up human’s searching for a set of sound events of interest in an audio

recording when there are too few labeled examples (e.g., one) of the sound class

to train a state-of-the-art machine audio labeling system.

1.2.2. Problems with building automatic sound event detection systems

Imagine you are working on building an automatic noise monitor device for environmental

sounds, as is being done in New York University’s Sound of New York City (SONYC) project

[5]. You try to analyze what kind of noises occur by day and by night. You have a list of

noise sources which could happen near your place and a set of recordings collected from

YouTube videos and microphones installed in front of your house. Now you want to build a

machine learning model to automatically detect sound events of the pre-defined classes. The

typical approach to training automatic sound event detection systems is supervised machine

learning which requires annotated training data. So you need to label the collected audio

data to use them as training dataset.

For a supervised machine learning model to be maximally effective at detecting sound

events with their onset/offset times within a recording, they need to be trained on audio

data with time-coded labels that indicate the start and stop times of sound events (strongly

labeled data). Training examples without time-information of sound events will generate

noisy training signal, thus they will prevent models from learning accurate mappings between

sound events and the ground-truth labels. The problem is that manually annotating each

sound’s onset and offset within a recording is a very time-consuming task. It often requires

25

repeated listening and adjusting of label time boundaries on a visual interface [49]. Moreover,

building high-performance machine learning models usually requires lots of training data (e.g.

tens of thousands of labeled audio files). This imposes a large burden on human annotators.

In this dissertation, I present a new type of sound event labeling that requires

less human annotation cost as well as a new way of training supervised machine

learning models with the new labels.

1.3. Summary of Contribution

In this section, I summarize the main contributions of my dissertation. Chapter 2 and 3

contain methods to speed up sound search for sound even annotation. Chapter 4 introduces

a new type of labeling point-labeling that requires much less annotation effort than collecting

strong labels, and present methods to train a sound event detection model using point-labeled

audio data.

1.3.1. Contribution in Chapter 2

I present a new human-in-the-loop sound search method to speed up human

annotation of a recording. It leverages machine learning’s ability to learn from human-

provided examples not to replace a human annotator, but to speed up human annotator. The

human-in-the-loop search method helps a user look at promising regions first in a recording,

enabling the user to find a set of sound events of interest very quickly not listening to the

entire recording. To evaluate the method, I built a human-in-the-loop interface for sound

event annotation, called Interactive Sound Event Detector (I-SED) where the annotation is

performed by a collaboration between a user and a machine. The user study shows that

I-SED helps users label target sound events twice as fast as labeling them manually.

26

I-SED is the first general-purpose sound labeling interface where an interactive machine

learning approach is applied to sound event annotation. This method can be used in any

situation where ground-truth sound event labels are required. I also present an in-depth

study about how to evaluate the human-in-the-loop interface. I believe the study can be

a useful reference to one who needs to evaluate the human-in-the-loop system where both

machine’s performance and human’s ability can affect the system’s overall performance.

My works in Chapter 2 have been published in the Transaction on Interactive Intelligent

System (TiiS) [49] and presented at ACM conference on Interactive User Interface (IUI)

[48].

1.3.2. Contribution in Chapter 3

I present a new method for a user to improve Query-By-Example audio retrieval

which would potentially speed up the interactive annotation process presented in Chapter

2. The method solves the situation where a machine’s searching for promising regions in

the audio is confused by overlapping sound in a query which leads to poor retrieval results

during early stages of the interactive annotation.

The method utilizes users’ vocal imitation. Users can improve the search results simply

by imitating the sound events they do or do not want. It is a new approach for a user

to provide an audio search system with additional audio examples as positive and negative

feedback. The interaction is useful especially when prerecorded examples of each isolated

sound event in a query are not available. It is often hard to find a recording that sounds the

same as an isolated sound event in a query containing overlapping sound. To implement the

interaction, I present ways of using an existing deep neural network model for generating

audio embeddings to create a similarity measure for Query-By-Vocal imitation (QBV) search.

27

To evaluate the effectiveness of vocal imitation in content-based audio search, I created

Vocal Imitation Set, a new crowd-sourced vocal imitation dataset. Vocal Imitation Set is

the first dataset of vocal imitations that uses a widely-used ontology, AudioSet ontology [29]

and it has more than double the number of imitations available in existing vocal imitation

datasets [17].

My works in Chapter 3 have been presented at IEEE conference on Acoustics, Speech

and Signal Processing (ICASSP) [50] and the Workshop on Detection and Classification of

Acoustic Scenes and Events (DCASE) [47].

1.3.3. Contribution in Chapter 4

I present a new type of sound event labeling, Point labeling that can be obtained

with less human effort as well as a new method to build a sound event detection

system on point-labeled audio data. Point labels contain names of sound events at a

single time point per sound event instance in a recording. A human annotator can indicate

a sound occurred (e.g., by clicking a mouse button or hitting a key) anywhere within the

area of the sound event. Therefore, point-labeling is much faster than strong-labeling (i.e.,

labeling with accurate time-boundaries of a sound event) and better than weak-labeling (i.e.,

labeling without any time information). I also present a method to automatically make point

labels competitive with strong labels by bootstrapping from weak labels. It helps to build

a SED system with point-labeled data that is comparable to one built on strongly labeled

data.

I evaluate the efficacy of point labels for building a sound event detection system us-

ing the proposed training method. The experiment results show that a model trained on

point labeled audio data is comparable to a model trained on data labeled with correct

28

time-boundaries of sound events (i.e., strongly labeled data). Therefore, I believe that the

proposed methods will allow us to build a high-performance machine annotation system with

much less human labeling cost.

My works in Chapter 4 have been presented at IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (WASPAA) [51].

Supplementary materials for each chapter such as audio examples, demo videos, or codes

for experiments are available at https://github.com/bongjun/thesis.

1.4. Broader Impact

The proposed methods are applicable in any field that needs to search and label sounds.

Sound designers might want to search for sound effects of interest in a database or a long

audio recording quickly. Ecologists need tools for labeling bird calls and singing in lengthy

recordings. Language pathologists are also interested in audio searching tools to find sound

events that would affect children’s language development in an audio file where their everyday

life is recorded.

The proposed work would also help people working on citizen science for sound object

labeling such as the SONYC project [5] where crowd-workers are asked to annotate sound

events in a recording to be used to build noise monitoring systems. The research in this

dissertation on the new sound event labeling (i.e. point-labeling) and the proposed model

training method will make it possible to generate enough labeled data for a statistical ma-

chine learner to be trained in cases where it is currently prohibitive to label enough data by

hand. This will eventually increase the range of sound-objects that could be automatically

identified by AI systems.

https://github.com/bongjun/thesis

29

In addition to audio annotation, the proposed methods can be applied to video data.

Researchers who study animal behavior might need to annotate video data quickly to build a

system for automatically computing quantitative measures of animal behavior [43]. It is also

very time-consuming to label video scenes to train a machine learning model for computer

vision tasks such as visual event detection [115, 74]. The proposed model training method

on point-labeled data will reduce such annotation efforts.

Finally, the proposed point-labeling is a new audio labeling method that has not been ad-

dressed in any of sound event detection literature. In this dissertation, I provide the evidence

that models trained on point-label data outperform models on weakly-labeled data. There-

fore, I expect that my works on point labeling will open new opportunities to researchers

who have been working on an audio detection model with weak supervision.

30

CHAPTER 2

A human-in-the-loop system for sound event annotation

2.1. Introduction

In this chapter, I address sound event labeling tasks that fall in a middle ground: there is

too much audio to be practically labeled by hand, yet there are too few training examples to

train an accurate statistical model. I want to develop an efficient way to achieve human-level

labeling accuracy with much less human effort than is typical for manual audio annotation.

I note that my primary goal in this chapter is to speed the labeling task at hand, rather

than to train a generalized machine learning model for later use on different data.

To achieve the goal, I apply a human-in-the-loop approach to sound event detection and

annotation. The idea is to engage users in an interactive process [102] to collaboratively label

the audio with the machine. Human-in-the-loop machine learning is a technique that has

received attention recently as one approach to resolving limits of fully automated systems. It

has been applied in many areas, such as image retrieval and identification systems [102, 12,

110], image foreground extraction [90], image object labeling systems [92], biomedical image

recognition [116], natural language processing [97], Network Alarm Triage [2], interactive

visualization for machine learning [101], musical performance [26, 25], and audio source

separation [78, 11, 24].

In this chapter, I present a new human-in-the-loop sound search method to speed up

sound event annotation in a recording. The system directs the user’s attention to the most

promising regions of audio for labeling. The user labels these regions and gives the system

31

feedback by labeling and adjusting region boundaries. The system learns from this feedback

and updates future recommendations for high-interest regions.

To assess the effectiveness of the proposed method for sound event annotation task, I

build an audio annotation tool called Interactive Sound Event Detector (I-SED) and perform

a human subject study with potential users of the tool. In the experiments, I evaluate how

much the proposed tool speeds up sound event annotation tasks. The results show that

my approach helped the experimental participants label target sound events twice as fast

as labeling them manually. I also present a method to quantitatively assess the system’s

retrieval performance and the interaction overhead separately, as these are two key factors

that determine the performance of a human-in-the-loop system. The analysis shows that

an ideal interface that does not have interaction overhead at all could speed labeling by as

much as a factor of four.

The contributions of my works in this chapter are the following:

• A new human-in-the-loop sound search method which greatly reduces sound event

annotation time

• The first general-purpose sound annotation interface where interactive machine

learning is applied

• Qualitative and quantitative evaluation of the proposed interface.

• Evaluating the interactive overhead caused by the human-machine collaboration.

2.2. Related works

2.2.1. A human-in-the-loop system for multimedia retrieval and annotation

A common approach to labeling large amounts of multimedia data is through crowd-sourcing

[15, 106, 108] where a small amount of data to label is assigned to a crowd-worker with

32

web-based annotation interfaces. Even though crowd-sourcing annotation is a great way

to collect large scale labeled audio data quickly, it is not appropriate in a situation where

the audio data should be annotated very accurately by domain experts or must not be

distributed in public, such as audio recordings of patients for clinical purposes or costumer’s

private conversation with AI agent (e.g., Apple’s Siri or Amazon’s Alexa). In this chapter

of my dissertation, I focus on the case where a very accurate annotation is required and

crowd-sourcing is not an appropriate solution.

Interactive learning frameworks that depend on users’ relevance feedback have been ac-

tively researched in image retrieval. CueFlik [27] is a web image search application that

allows users to create and adjust rules for concepts (e.g. portraits of people) by providing

the machine with positive and negative examples. The user feedback iteratively updates the

rules to obtain more accurate image search results. Their interactive approach is aimed at

training the best classifier to retrieve images relevant to a query. My goal is to completely

label the audio easily and quickly.

In general, interactive image annotation/retrieval systems provide a user interface where

a user can look at sets of images and give the system feedback by clicking the images [1] or

selecting sub-regions of the images [12, 105]. The interface design for my sound detection

tool focuses on directing the user’s attention to promising sub-sections (i.e. the machine’s

recommendations) of a long audio track for labeling.

2.2.2. Existing sound annotation tools

Several audio editing applications such as Audacity [64] and Sonic Visualizer [14] provide

an annotation environment where a user manually selects a sub-section of an audio track

and labels it. Audio-annotator [18] and BAT [71] is a web-based audio annotation interface

33

for crowd-souring which also provides the manual annotation environment. Sonic Visualizer,

AudioSculpt [8], Audio Brush [10], ASAnnoatation [9], and Praat [7] also provide low-level

feature information (e.g. pitch content, repeated structure labeling) by using audio signal

processing techniques, but they do not use high-level semantic labels (e.g. Bob’s voice) and

do not allow user-defined labels.

TotalRecall [56] is a semi-automatic multimedia annotation tool. It automatically detects

speech regions on an audio track (speech or non-speech) for audio segments. It helps a user

to find speech sections of an audio track easily, but is hard-coded to find speech and cannot

be on-the-fly re-purposed for detecting other kinds of events.

SoundsLike [32] is a tool to detect user-selected sound events in a movie. It provides a

similarity graph that visualizes which audio segments are similar to the user-selected segment

as an aid for easier navigation. The system does not update its similarity estimates based

on user feedback. Therefore, if the system thinks two segments are similar and the user

doesn’t, there is no way to correct the system. They also did not evaluate how much the

similarity graph helps the annotation process. Finally, the interface does not provide any

machine prediction to speed up the labeling process.

Gulluni [33] suggested an interactive approach to analyze electro-acoustic music by in-

teractive machine/human labeling of sound objects within a music track. While Gulluni’s

system does not allow a user to change the boundaries of segmented regions, my system

utilizes boundary adjustment of segments as user feedback to retrain a model. Moreover,

their approach uses clustering techniques that require a user to listen to the audio multiple

times to determine the best segmentation level. Multiple listenings can be problematic for

long audio files (hours long). They also did not conduct human subject studies to evaluate

the effectiveness of the system and only tested their system in simulation. In contrast, I

34

performed a human-subject study where participants used the proposed tool and a man-

ual editor to label audio, letting us observe the effectiveness of my approach for speeding

labeling.

Nakano et al. [76] presented an interactive annotation interface for music. It helps a user

to label pitch contour of a vocal sound in music quickly. Once a user annotates pitch contour

of a vocal sound in a section of music, the system shows pitch contour estimation in other

sections that are similar to the user-edited section. Then, the user can accept or edit the ma-

chine’s suggestion. Similar sections are detected by using repeated structure of music. While

the annotation in their interface is performed by human-machine interaction, their method is

fundamentally different from my work where a machine learning model for detecting target

sound events gets improved during rounds of the human-machine collaboration.

2.3. Interactive sound event detection and annotation

In this section, I describe my sound event annotation system that lets a single user greatly

reduce the time required to label audio that is tediously long for a human (e.g. 20 hours),

has target sounds that are sparsely distributed throughout a long duration recording (10%

or less of the audio contains the target), and has too few prior labeled examples (e.g. one)

to train a state-of-the-art machine audio labeling system.

2.3.1. System overview

Figure 2.1 shows how the proposed system works with the user to label target sound events.

First, a user uploads an audio track into the system and provides an example of the kind of

sound they seek (e.g. someone knocking on a door). This can be done either by selecting a

region on the audio track containing a good example sound or by uploading a short example

35

1. The user defines the target sound by
selecting the region or submitting a file
containing an example sound.

2. Segmentation and feature extraction. 3. Highlights the n closest regions.

4. User feedback: adjusting region
boundaries and labeling.

- Feature weight
- Relevance score

5. Metric update

USER

SYSTEM

Figure 2.1. System overview of the human-in-the-loop sound event annotation.

audio file containing an example target sound (e.g. someone knocking on a door). Note that

the goal is not to find exact copies of the target sound in the audio file to be labeled. The

goal is to find other sounds of the same category (e.g. other door knocking sounds) in the

audio file.

The system segments the track into small regions whose length is the same as the initial

example and measures features of the audio file (see Section 2.3.2). It then finds the n

regions with features most similar to the example and directs user attention to them by

showing them as candidates. The user labels the candidate regions as positive or negative

(see Section 2.3.4), and adjusts the start/stop times of positive examples. Based on this user

feedback, the importance of audio features is re-weighted to move positive examples closer

together and further from the negative examples. Given this new feature space, the system

selects a new set of n relevant regions (see Section 2.3.3) for the user to evaluate. This

36

process of selecting candidate regions for human evaluation is repeated for some number of

rounds. As more examples are labeled by the user and the features are re-weighted every

round, the system’s ability to suggest good regions improves.

Active Learning [96] refers to the case where the learner selects the examples to learn

from, rather than passively receiving examples chosen by the teacher. This interaction

between the user and the system can be thought of as a kind of active learning where

the system is learning the feature weights for audio examples by presenting the unlabeled

segments it currently estimates to be most similar to the set of positively labeled segments.

The system shows the user the top n results and not the most ambiguous examples because

our purpose is to help the user complete the annotation quickly by directing their attention

to high-likelihood regions, not to train a machine learning model to fine-tune a decision

boundary. When one has a long audio file and only a few target examples, showing the top n

results lets users label them more quickly. This is a better strategy to speed up the labeling

task at hand.

2.3.2. Segmentation and feature extraction

Once a user provides the initial example to the system (e.g. a 3-second region containing

a bird call), the entire track is split into segments whose length is the same as the length

of the initial example (e.g. 3 seconds). In the initial phase, all segments have the same

length. However, once the user starts labeling the suggested regions, the length of user-

labeled segments will vary, because the user is allowed to adjust boundaries of the regions.

Given the possibility of varied-length segments, we need a way to measure the distance

between segments, regardless of segment length.

37

- Mean
- Variance
- Mean of delta
- Mean of delta variance

Entire track

Segment

Frames
MFCCs

… MFCCs

MFCCs

13 MFCCs per frame

…

frame #1

frame #2
frame #3

#1
#2

#3

Figure 2.2. Audio feature extraction for all segments of an audio file. MFCCs
are extracted frame-wise and pooled over each segment using the means and
variances of both the instantaneous and delta values.

To measure distances between the segments including the initial example, audio features

are extracted over each fixed-length segment. Our system extracts the first 13 Mel Frequency

Cepstral Coefficients (MFCCs). MFCCs are widely used in a variety of sound recognition

tasks [82]. As shown in Figure 2.2, each segment is split into a sequence of short frames (e.g.

a frame-size of 90ms with 50% overlap between adjacent frames) and MFCCs are computed

on each frame. The MFCC Features extracted frame-wise are pooled over each segment (e.g.

3 seconds) using mean and variance of instantaneous and delta values. The delta values

are the difference between feature values of two consecutive frames. These represent basic

temporal characteristics of the feature vectors in one segment. As a result, a 52-dimensional

feature vector is built for each segment (13 MFCC averages, 13 MFCC variances, 13 MFCC

38

average delta, 13 MFCC average delta variance). Using this feature extraction method,

varied length segments can be represented as a fixed-length of vector (i.e. 52 dimensions) so

that distances between the segments are easily measured in the feature space.

2.3.3. Relevance score

In each round, the system measures the distance between each unlabeled segment and the set

of positively labeled segments (initially, this set contains only the original target example).

Using this distance, it ranks them by decreasing level of relevance, and presents the top

n segments to a user. To compute the relevance score, I apply a simple nearest neighbor

method [31]. The relevance score of an unlabeled audio segment s can be computed as

(2.1) Rel(s) =
d(s, sn)

d(s, sn) + d(s, sp)

where sp is the nearest positively-labeled segment to s and sn is the nearest negatively-labeled

segment to s. Function d(a, b) is the weighted Euclidean distance between two segments in

the feature space. When there is no negative segment (there is always at least one positive

example, which is the initial query), the relevance score is computed as

(2.2) Rel(s) =
1

d(s, sp)
if |neg| = 0,

where |neg| means the number of negative segments.

To obtain a more accurate relevance score in each round, the system re-weights features

using Fisher’s criterion [112]. The weight of ith feature is computed as

(2.3) w(i) =
(avg(fp

i)− avg(fn
i))2

std(fp
i)2 + std(fn

i)2

39

where fp
i and fn

i are vectors whose elements are ith feature values in the 52 dimensional

(MFCC-based) feature vectors of all positive and negative examples respectively. avg(x)

and std(x) indicate the mean and standard deviation of elements in a vector x.

As the i-th feature contributes more to better discrimination between positive and neg-

ative examples, its Fisher score will increase. The system re-weights each feature with the

Fisher score based on the current labeled segments (positive and negative) in each round and

the relevance scores (eq. (2.1)) over all segments are computed in the updated feature space.

I expect that as more labeled segments are collected, the relevance score would become more

accurate.

2.3.4. User relevance feedback

The system presents n segments to be labeled every round and the user adjusts segment

boundaries and labels them. Labeling segments plays an important role as feedback for the

future rounds because the machine’s suggestions for each round depend on the user feedback

in past rounds.

A user can provide two types of feedback to the system, as shown in Figure 2.3. One is

to apply positive or negative labels to each candidate example. This type of feedback has

been widely used in interactive image retrieval systems [111]. The other type is to adjust

boundaries of the suggested region when the region does not cover the whole duration of

a target sound event. This type of feedback is typically not used in document or image

retrieval systems, but is useful for improving retrieval of regions of audio files.

The system automatically collects additional negative examples from the user’s boundary

adjustments. As shown in Figure 2.4, for example, suppose the user changes the position of

the region (A) and labels it as positive. In this case, the system can obtain not only one

40

1. Labeling: Positive or Negative 2. Re-sizing or re-positioning

Figure 2.3. As feedback, a user labels regions positive(blue)/negative(red), or
changes the time position and size.

A

A* B

C

C* D D

Figure 2.4. The region A and C (gray) are the machine’s suggestions. A user
listened to them, changed the temporal location of A and adjust boundaries
of C, and labeled them positive (A* and C*). Then the system automatically
labels the region B and D as negative since it is clear that they do not contain
the target sound events.

positive example, but also one negative example which is the region (B) that the user did

not select after listening to it. In the same way, adjusting boundaries of region (C) generates

negative examples (D). This automatic negative labeling is beneficial in two ways: 1) A user

implicitly labels more regions in one iteration, speeding interaction, and 2) Since our system

presents the most relevant examples to a user every round, the pool of labeled examples tends

to skew towards positive, which could make measuring relevance score problematic. There-

fore, adding negative examples automatically helps in computing more accurate relevance

scores of unlabeled examples.

41

2.4. Interface design and implementation

I implemented a web-based interactive annotator and Figure 2.5 shows its main workspace.

Readers can watch the demo video and try the application out at http://www.bongjunkim.

com/ised/. It consists of these main sections: Navigation Map, Annotation Track, Listen

and Label These, and Already Labeled. The Navigation Map displays a waveform of an entire

track and the currently labeled regions so that a user navigates and listens to them easily.

The Annotation Track is a zoomed-in version of Navigation Map where a user can select or

adjust regions and label them by clicking and dragging a mouse. The Listen and Label These

displays the top n candidate regions identified by the machine. These are to be labeled by

the user every round.

Figure 2.6 describes how a user performs the labeling task in each round. The user listens

to new regions by clicking the items in the Listen and Label These section. If a region does

not contain an example of the target sound class, the user labels it as negative by clicking

the Negative button. If the region has the target sound, the user first adjusts boundaries

of the region so that it fully covers one instance of the target sound class and labels it as

positive by clicking the Positive button. The user labels all the regions in each round and

clicks on the Find Similar Regions button to submit the feedback to the system and obtain

a new set of candidate regions from the system.

The Already Labeled section shows regions labeled positive during past rounds. A user

can listen to them by clicking each item in the list. Clicking on the Export Results button

saves the annotation results to a text file containing start and stop times of all positive

regions.

http://www.bongjunkim.com/ised/
http://www.bongjunkim.com/ised/

42

Figure 2.5. Screenshot of the interactive sound annotator.

2.5. Evaluation

I conducted a user study to validate the effectiveness of the proposed interactive an-

notation approach compared to manual annotation. The experiment seeks to answer the

following questions:

• Which interface enables participants to label the given audio track faster?

• How accurately did participants label the target sound events using each interface?

43

Listen	to	a	new	
suggested	region.		

Fully	
covers	the	
sound?	

Click	<nega%ve>	
or	do	nothing.	

Labeled	
All	for	this	
round?	

Click	<Find	
similar	regions>	

N

Y Click		
<posi%ve>	

Adjust		
boundaries.	

Listen		
again.	

N

Y

N

Y

Has	a	
target	
sound?	

Figure 2.6. User interaction flowchart of the interactive annotator.

• How satisfied are participants with each interface?

• Do participants prefer the proposed interactive annotation to manual annotation?

• What user-interface overhead does the interactive annotation approach impose, com-

pared to manual annotation?

2.5.1. The two interfaces compared in the study

The two interfaces I compared were the proposed interactive annotator and a manual an-

notator, similar to the standard interfaces currently used for manual annotation. In the

interactive annotation tasks, a participant submits a file containing an initial target sound

event to the system, and then the system presents the five most relevant regions to the user

at each round. If the participant thinks a suggested region contains the target sound events,

the participant labels it as positive. If the suggested region contains only some portion of

44

the target sound, the participant adjusts the position of the candidate regions and labels

it as positive. If it does not contain the target sound at all, it is labeled as negative. The

participant keeps labeling in this manner for the given amount of time in each task (15

minutes).

In the manual annotation tasks, participants use an identical interface to the interactive

annotator, except for the removal of the recommendations from the system. They find target

events by listening to the track sequentially (from the beginning to the end) or accessing any

time position on the track. If they find the target sound event, they drag a mouse over the

region containing the target sound. They keep finding as many sound events as they can for

the given amount of time in a task (i.e. 15 minutes).

Both interfaces also provided a control for the user to adjust playback speed (1x, 2x,

and 3x). Speeding playback is an alternative way to speed up the search that is commonly

available in many multimedia players or annotators such as Youtube, Quicktime Player, or

Audacity. It is also known that increasing up to double rate produces no significant loss in

comprehension of speech, but higher playback rate produces a loss in comprehension [77].

To navigate an audio track, one might use a scrubbing function that is available in

modern Digital Audio Workstaion (DAWs), where a user drags a cursor on a waveform and

the audio samples the cursor is passing by are played. In the interfaces for this experiment,

the scrubbing feature was not provided because it is mostly useful to find a precise spot

where sound characteristics dramatically change (e.g. silence between noisy sections), and

is not useful for recognizing relatively short sound events overlapping each other in a long

audio track, therefore I did not include a scrubbing feature in either interface. By decreasing

the chance a user makes mistake with the scrubbing feature and takes more time, I can more

fairly evaluate the efficacy of the interactive annotation against the manual annotation.

45

2.5.2. The audio dataset

To evaluate our system, I used the dataset from the IEEE Audio and Acoustic Signal Pro-

cessing Technical Committee challenge on Detection and Classification of Acoustic Scenes

and Events (DCASE) [99]. The DCASE dataset is one of a few public datasets for compu-

tational analysis of sound events and scene analysis. Moreover, since it has been used in a

public challenge, it is well-designed enough to test submitted algorithms properly in various

situations. Using a public dataset also allows future systems to compare to our approach

under the same conditions.

To generate testing tracks for this experiments, I chose files used for the Office Synthetic

(OS) Event Detection Task of the DCASE challenge.1 These consist of two-minute duration

mono recordings of sequences containing overlapping acoustic events in an office environment

(e.g. coughing, drawer, door knock, speech, etc.).

I anticipate 10 minutes as the minimal length of track where someone might wish to

speed search. Therefore, I created two different 12 minute-long audio tracks by concate-

nating six short tracks in the DCASE dataset to create each track. Each track contains 11

different sound classes with 18 examples of each class on the track. All sound events are

randomly distributed over a track. The two tracks, while containing similar sound events,

order these events differently. This prevents learning ordering details of one track influencing

performance on the other.

The sound classes in the two tracks include the following 11 sound events: door knock,

door slam, speech, human laughter, clearing throat, coughing, drawer, keyboard typing, keys,

phone ringing, page turning. The DCASE dataset provides audio files with three different

1http://www.cs.tut.fi/sgn/arg/dcase2016/task-sound-event-detection-in-synthetic-audio

http://www.cs.tut.fi/sgn/arg/dcase2016/task-sound-event-detection-in-synthetic-audio

46

levels (-6, 0 and 6 dB) of the average Signal-to-Noise Ratio (SNR) of events over the back-

ground texture. Readers can find more detailed information about the dataset in [99]. I

chose audio files with -6 dB SNR (i.e. the target sound is 6 dB softer than intruding back-

ground noises) when generating the testing tracks. This reduces the chances that users could

obtain additional information about the sound events by looking at the shape of waveform

displayed on the screen, as the waveform is not noticeably larger when the target sound

class is present if the target class is 6 dB softer than the background. It also makes the

problem more challenging for the machine recommender system, as sounds softer than the

background noise are more difficult for automated systems to detect.

The summed total time that all of the instances of the target class take up in a track

is roughly 4% of the entire length of the track. The density of target events and distractor

events are roughly 1.5 and 15 (events per min). The average inter-onset-intervals of the 18

examples of a sound class is 38 seconds. Since environmental recordings are usually long

and have many different kinds of sound events happening in our everyday life, I believe that

the generated audio tracks, which have sparsely distributed sound events of each class, are

appropriate to evaluate the proposed sound annotator.

2.5.3. Participant recruiting

The target users of the proposed tool are people who need to find and label sound events

within an audio track for their research activities. These groups of users include speech

and language pathologists, who need to analyze relationships between children’s language

development and their listening environment by recording their everyday life. Another group

of potential users are researchers who study machine listening, since building an automated

sound event labeler with supervised machine learning usually requires a number of correctly

47

labeled audio examples of various sound classes as training data. Therefore, I recruited people

who study speech and language development or machine learning in the audio domain. I also

recruited people who have experienced audio editing or labeling software. Even if people in

this group may not be the main target user group, I believe they are appropriate subjects

to validate the efficacy of the proposed system against manual annotation, since they are

familiar with critical listening to audio recordings.

To ensure participants capable of recognizing sound events for the experiments, I per-

formed a hearing pre-test. Participants were given a labeled target sound event to listen

to (e.g. speech) and 10 different sound events (3 speech events and 7 other events) were

presented. They were asked to select all sound events that belong to the same label as the

target sound (e.g. speech) and they had to correctly label all target sound events to pass

the test. I performed the hearing test twice per subject with two different target sounds (i.e.

speech and door knock). These were the target sound classes used in the actual annotation

tasks. This let the listening test also implicitly train participants on the range of variation

to expect for target sounds in the actual tasks.

I did not limit gender and age of participants as long as they belong to the target

group mentioned above, but all recruited subjects were over 18, since I recruited people

who have experienced at least college-level research activities related sound (e.g. speech and

hearing, machine listening). Subjects’ native language did not matter as long as they could

understand the experimental instructions written in English. In total, 20 subjects who met

all requirements were recruited and each subject performed two annotation tasks using two

different interfaces. All sessions were conducted using a desktop computer and headphones

in a quiet room.

48

2.5.4. Task procedure

Each subject participated in one session. One session included a hearing test, training on

the interfaces, two annotation tasks (one on the proposed interface and one on the manual

interface) and survey questions about their experience. Each session lasted about one hour.

To reduce the chances that the order of presentation of interfaces would influence the

results, half of the participants tested the proposed interface first and the other half tested

the manual interface first. As with interfaces, half of the participants were presented Task

1 (the first audio file) first, and half were presented Task 2 (the second audio file) first. As

a result, 20 participants were divided into 4 groups so that task and interface order was

balanced:

• Group1: Manual, Task 1 → Interactive , Task 2

• Group2: Manual, Task 2 → Interactive, Task 1

• Group3: Interactive, Task 1 → Manual, Task 2

• Group4: Interactive, Task 2 → Manual, Task 1

I selected two different sound types for users to detect: one from physical objects, door

knock and the other from human voice, human speech. Thus, participants labeled door knock

in Task 1 and human speech in Task 2. These sounds were selected to be quite different

from each other, as human speech is complex, varied and harmonic, while door knocks are

transient, percussive sounds. I hypothesized that there might be differences in how good the

system recommendations would prove for these qualitative different sounds.

Each task includes a training session for a subject to learn how to label audio using

each interface. In the training session, participants were given the exact same task as in the

testing phase, except for the recording to be labeled. For training, I chose a two-minute long

49

recording from another DCASE challenge dataset. It contains 15 classes of sound events

(including speech and door knock sound) recorded in an office environment. Participants

were required to spend at least 4 minutes practicing the labeling task. If they wanted

to practice more, they were allowed to practice the labeling task as long as desired. No

participant, however, chose to spend more than 4 minutes on training. Participants were

also allowed to ask any questions about the task and the interface during and after the

training session.

For each task, participants were asked to find as many regions containing the target

sound class (e.g. door knock) as they could within 15 minutes. I believe that 15 minutes are

enough for a user to label a 12-minutes long audio track even when they listen to the entire

track sequentially from the beginning to the end. For the interactive annotator, an example

target sound file was provided for the user to submit to the system as the initial query, which

is one of two ways of submitting an initial query to the interactive annotator as described

in Section 2.3.1. The reason I chose the method is because I only wanted to measure the

benefits of the interactive loop against the manual method. Time that users would spend

finding the first query in audio to be labeled would vary depending on the position of the

target sound on the audio track and how they search for it. The initial query given to users

is not one of the 18 examples of the target classes on the audio track. Therefore, regardless

of which interface (manual or interactive) was used, each participant was given 18 examples

to label in each task.

After each task, the participant was asked to identify their level of agreement with the

following statements:

• I had a clear understanding of the task.

• I understood how to use this interface to achieve the given goal.

50

• I was satisfied with using this interface.

• I was able to label target sound events easily.

To do this, the participant was given a slider for each question that was labeled as ranging

from strongly disagree (O) to strongly agree (1). After the entire session (both sound labeling

tasks) was done, participants were asked a set of questions comparing the two interfaces:

• Which interface was easier to use?

• Which interface was easier to learn?

Additionally, they were provided a free-form comment box where they could leave any

feedback about interfaces or tasks.

2.5.5. Performance measures

The machine’s role in the proposed system is to direct the human’s attention to the most

likely portions of the audio, not to determine whether something is a member of the target

class or not. The human makes the final determination. One can think of this system as

an attention model instead of a classifier. Therefore I sought to measure how quickly a

user found regions containing target sound events within a recording. How the classification

accuracy of a machine learning model changes over time is not my focus.

As participants labeled audio, the system recorded positions of labeled regions, whenever

labeled regions were added or updated. Based on the recorded log, I evaluated a user’s

labeling performance by measuring the proportion of sound events correctly detected by a

user as a function of time spent on the task (0 to 15 minutes). I considered a sound event

correctly labeled if the temporal position of user-labeled region overlaps sufficiently with the

temporal position of its ground truth with one-second tolerance.

51

(a) All classes (n=20) (b) Door knock (n=10)

(c) Speech (n=10) (d) Experienced (n=7),
 non-experienced (n=13)

Interactive
Manual

0 100 200 300 400 500 600 700 800 900
Time (sec)

 1.0

 0.8

 0.6

 0.4

 0.2

 0.0

P
ro

po
rti

on
 o

f e
xa

m
pl

es
 fo

un
d

Time (sec)

 1.0

 0.8

 0.6

 0.4

 0.2

 0.0

P
ro

po
rti

on
 o

f e
xa

m
pl

es
 fo

un
d

 1.0

 0.8

 0.6

 0.4

 0.2

 0.0

P
ro

po
rti

on
 o

f e
xa

m
pl

es
 fo

un
d

Time (sec) Time (sec)

 1.0

 0.8

 0.6

 0.4

 0.2

 0.0

P
ro

po
rti

on
 o

f e
xa

m
pl

es
 fo

un
d

Interactive
Manual

Interactive
Manual Interactive (exp.)

Manual (exp.)
Interactive (non-exp.)
Manual (non-exp.)

0 100 200 300 400 500 600 700 800 900

0 100 200 300 400 500 600 700 800 900

0 100 200 300 400 500 600 700 800 900

Figure 2.7. The proportion of target sound instances found as a function of
time spent on the task (quantized every 5 seconds) using two different inter-
faces, the proposed interactive interface and the manual annotator. Here, N
= 20, as each of 20 participants tried both interfaces in a session. (a)-(c): the
proportion of examples found as a function of time spent labeling for all classes
(a), knock only (b), and speech only (c). Lines indicate median, and dark and
light bands of each color show 75th and 25th percentile. (d): the performance
of two different participant groups: experienced and non-experienced. Lines
indicate the median value of a pair of each user group and interface.

52

2.5.6. Results

Log data and answers to questionnaires were collected from 20 participants. The partici-

pants reported having an average of 42 months of experience using audio editing or labeling

software. Moreover, 13 out of the 20 participants have used audio editing software longer

than one year and 7 of them have prior experience using software to label sound events.

2.5.6.1. The absolute performance from log data. Each participant was asked to find

as many target sounds as they could for 15 minutes within a 12 minute long recording using

two different interfaces, manual and interactive annotator. Figure 2.7 shows how quickly the

participants labeled target sound events over time.

Figure 2.7(a) shows the proportion of the target sound events detected by the 20 partic-

ipants as a function of time they spent. Figure 2.7(b) and (c) shows the performance of the

two different tasks respectively (labeling door knock and speech). Figure 2.7(d) shows the

performance from two different groups of participants (7 people who have prior experience

using software to label sound events and the other 13 people who do not have the experi-

ence). In Figure 2.7 (a), (b) and (c), lines indicate median, and dark and light bands of

each color show 75th and 25th percentile. Lines in Figure 2.7 (d) indicates median value of

a pair of each user group and interface. The median user of the proposed interface labeled

all target examples within the time given.

Overall, it took an average of 517 seconds for participants to label all target sound

events using the interactive annotator (15 rounds per user). This is roughly half the time

it took the manual labelers. Specifically, Figure 2.7(a) shows that the interactive annotator

lets one find about 80% of the target sound events in about 350 seconds. To achieve the

same performance using the manual annotator, it takes 720 seconds (1-second tolerance).

53

Therefore we can conclude that the interactive annotator helped participants find sound

events roughly twice as fast as the manual annotator.

Figure 2.7(b) and (c) show which task took participants more time labeling each target

sound. It turned out that labeling speech events took less time than labeling door knock

events regardless of which interface they used. This difference probably came from the

acoustic characteristics of the two sound events. One instance of knocking sound consists

of multiple non-harmonic and short sound events (e.g. knock-knock-knock). So participants

had to listen to the audio to find the exact start and end position of one instance of knocking

sound event. On the other hand, recognizing the start and end position of speech is relatively

easy.

I also examine the difference between participants who have prior experience using soft-

ware to label sound events and participants who do not. As shown in Figure 2.7(d), there is

no big difference between them in terms of how quickly they found the target sound events.

We can conclude that the interactive annotation interface speeds labeling by roughly the

same amount, regardless of a user’s prior experience with labeling audio.

2.5.6.2. Self-reported performance. Figure 2.8 shows participants’ level of agreement

(0 to 1.0) with statements about their experience with each interface. I performed statistical

tests to validate whether there is a significant difference between mean responses to questions

about experiences with the interactive and manual annotator. I used Wilcoxon signed-rank

since the data is not normally distributed.

The responses range from 0 (strongly disagree) to 1 (strongly agree). For statement

1 (“I had a clear understanding of the task.” and statement 2 (“I understood how to use

this interface to achieve the given goal.”), there is no significant difference between the

two interfaces. This means that most of the participants clearly understood how to use

54

S1: I had a clear understanding of the task.
S2: I understand how to use this interface to achieve the given goal.
S3: I was satisfied with using this interface.
S4: I was able to label target sound events easily.

1.0

0.8

0.6

0.4

0.2

0.0

A
gr

ee
m

en
t

Statements

Manual
Interactive

Figure 2.8. User responses to questions about experience with each interface.
Responses range from 0 (strongly disagree) to 1 (strongly agree). N=20 for
each box plot.

both interfaces in the tasks. On the other hand, for statements 3 and 4, there is a significant

difference between their mean responses. The mean responses to statement 3 (“I was satisfied

using this interface.”) are 0.588 (manual) and 0.785 (interactive), and they are significantly

different (p < 0.05). The mean responses to statement 4 (“I was able to label target sound

events easily.”) are 0.667 (manual) and 0.878 (interactive) and they are also significantly

different (p < 0.005). This indicates that participants felt the annotation task was easier

using the interactive annotator.

I also compared responses from the two groups (7 experienced and 13 non-experienced

participants). As shown in Figure 2.9, in the non-experienced group, the mean responses to

55

(a) Manual annotator (b) Interactive annotator

S1: I had a clear understanding of the task.
S2: I understand how to use this interface to achieve the given goal.
S3: I was satisfied with using this interface.
S4: I was able to label target sound events easily.

1.0

0.8

0.6

0.4

0.2

0.0

A
gr

ee
m

en
t

Statements
S1 S2 S3 S4

A
gr

ee
m

en
t

Statements

1.0

0.8

0.6

0.4

0.2

0.0

S1 S2 S3 S4

Non-experienced

Experienced
Non-experienced

Experienced

Figure 2.9. Comparison between survey responses from two different partic-
ipant groups. (a): response about the manual annotator. (b): response
about the interactive annotator Responses range from 0 (strongly disagree)
to 1 (strongly agree). N=13 for non-experienced participants and N=7 for
experienced participants.

statement 3 are 0.578 (manual) and 0.798 (interactive). The mean responses to the statement

4 are 0.657 (manual) and 0.889 (interactive). In the experienced group, the mean responses

to the statement 3 are 0.579 (manual) and 0.797 (interactive). The mean responses to the

statement 4 are 0.620 (manual) and 0.857 (interactive). Based on this analysis, we can

conclude that the interactive annotator was preferred regardless of users’ prior experience

using labeling software.

2.5.6.3. Participants comments. Participants wrote comments about their experience

with each interface in the free-form response box. Many people liked the effectiveness of the

56

recommendation feature of the interactive annotator, compared to the manual annotator.

Representative quotes include:

“Using the manual annotator, I could not listen to the entire sound signal in the given

time. It seems the only way of finding all the target moments is to listen to all the signal

which includes a lot of irrelevant sound samples.”

“The interactive annotator did a great job at quickly finding the relevant regions. I even

had time to go back and adjust the boundaries of some of the regions.”

“It is hard to say with 100% certainty that I was able to label the audio more accurately

with the interactive annotator, but I spent the last 9-10 minutes not even hearing any human

voices, which is assuring.”

While their log data showed they could find sound events more quickly, some participants

felt it is inefficient or boring because it started to suggest only irrelevant regions after all

target events are labeled. Representative quotes about this issue include:

“The interactive one gave me many negative parts.”

“I found that at the beginning of the test, the software found the target sound correctly,

but at the end, accuracy decreased. I guess this happened since at the end there are not

many door knock sounds left, so the software recommends any sound even though it is not

like a door knock sound. Even in this case, the software should not recommend wrong target

sounds.”

“Towards the end of the task, I had established for myself that I had found all the target

sounds in the last 5 minutes of the recording. While it was nice not to have to listen to

the entire track, it was frustrating each time the system suggested a sound that was not the

target sound.”

57

From this set of feedback, it is obvious that, for future work the interactive annotator

needs to have features where a user can be informed of the confidence of current recommen-

dations or when to stop the iterations.

Some participants were not satisfied with the interactive annotator because it was some-

times difficult to figure out sound events only by listening to small snippets of audio, so they

often had to make the suggested regions longer and listen to them. From this feedback, it

seems that suggesting longer snippets of audio to users than actual prediction may be a good

approach.

2.5.7. Interaction overhead

My interactive approach speeds up the labeling task by a factor of two in our user study.

Can we make it even faster? There are two primary ways to speed labeling further. The first

is to increase the accuracy of the system’s predictions. The second is to lessen the overhead

imposed on the user by interaction with the system. In this section, I address the issue of

interaction overhead.

Recall that the interactive system presents users specific audio segments to listen to and

label. Large portions of the audio were never listened to by users of the interactive system,

as the system deemed them irrelevant for the labeling task. To quantify the amount of

interaction overhead, I analyzed how long it took the average participant to label the audio

they did listen to and compared it to how long it took them to label a similar duration of

audio using the manual approach.

Figure 2.10 shows how long it took one participant to evaluate (i.e. labeling either

positive or negative) a fixed amount of audio. Two different colored solid lines (red and

blue) indicate the actual experimental data and the dotted lines are their linear regression

58

0 100 200 300 400 500 600 700
Audio length verified by a user (sec)

0

100

200

300

400

500

600

700

800

900

Ac
ut

al
 T

im
e

a
us

er
 sp

en
t (

se
c)

Slope=1.0
Regression
Manaul
Interactive

Figure 2.10. Total time a participant (one participant is selected as an ex-
ample) spent on the task as a function of the total amount of audio veri-
fied/labeled. The interactive system requires more time to label a fixed amount
of audio than the manual system. This interaction overhead partially offsets
the speedup of the overall task the interactive system provides by having the
users label the most promising segments of audio first.

lines. For this particular participant, the slopes of the two regression line are 4.07 for the

interactive annotator and 1.22 for the manual annotator. The slope value 4.07 means that

it takes 4.07 seconds to verify 1 second of audio.

To quantify the extra interaction overhead caused by the interactive approach, compared

to the manual approach, I use the ratio of the two slopes (i.e. overheadi/overheadm). For

the participant shown in Figure 2.10, this ratio is 3.62 to 1. I collected the interaction

overhead values for 14 participants (I do not have interaction overhead data for the other

6 participants because we started collecting the log for computing the interaction overhead

from the 7th participant). As shown in Figure 2.11, this ratio ranges from 2.95 to 7.69.

The mean is 4.68 (median:4.22), which means that the interactive system has 4.68 (mean)

59

 8

 7

 6

 5

 4

 3

 2

S
lo

pe
 R

at
io

Figure 2.11. Overhead ratio (interactive/manual) for 14 participants (Median:
4.22, mean:4.68).

times more interaction overhead than the manual system. Despite this ratio, the interactive

approach still doubles the speed at which users completed the up the overall annotation task,

by having the user to label the most promising segments of audio first. It is, however, obvious

that reducing the interaction overhead would improve the speed up even further. This way

of quantifying interaction overhead is useful when various human-in-the-loop systems need

to be compared, as it separates out the influence of the recommendation system and the

interface for the user to do labeling.

2.5.8. Machine accuracy

In addition to reducing interaction overhead, increasing machine accuracy is also a key

way to speed up labeling further. So it is important to measure the performance of the

human-in-the-loop system without considering the interaction overhead. Assuming there is

no interaction bottleneck in the interactive annotator, I simulated labeling tasks of a perfect

60

0 100 200 300 400 500 600 700
Audio length verified by the Oracle (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 e
xa

m
pl

es
 fo

un
d

knock
speech

Figure 2.12. The user simulation. The proportion of examples found according
to the proportion of audio the oracle evaluated. All sound events are detected
by evaluating less than 126 seconds of the audio (17.5% of the audio).

simulated oracle. I measured what proportion of the audio would need to be verified to

find all target sounds if the verification was done by the perfect oracle instead of a human

without any interaction overhead. The user (i.e. the Oracle) submits one sound target event

as the initial query, and then the system presents the 5 most relevant regions to the Oracle

at each round. If each suggested region is matched to one in the ground truth with 200ms

tolerance, the region is labeled as positive. If they are partially overlapping each other, the

Oracle adjusts the position of the candidate regions and labels it as positive. If they are not

overlapping at all, the Oracle labels it as negative. The Oracle keeps labeling until all sound

events are labeled.

I ran this oracle simulation with the same audio and target sounds (i.e. speech and door

knock) as in the user study. Figure 2.12 shows the proportion of detected sound events as a

61

(a) Speech (b) Door knock

Figure 2.13. The machine-estimated user performance overlayed on the actual
user data from Figure 2.7(b) and (c).

function of the proportion of audio verified by the Oracle. As shown in the figure, the oracle

found all sound events of the two classes by evaluating less than 126 seconds of the audio

(17.5% of the audio).

2.5.9. Estimating actual annotation time using user simulation and interaction

overhead

The user simulation is a good way of measuring machine’s accuracy. We can run the sim-

ulation on many different kinds of audio tracks easily, which costs a lot for the actual user

study. However, this is not a proper method for evaluating the overall performance of my

interface. We are not able to measure the actual time that a user would spend to achieve the

goal. The results from the user simulation are always too optimistic because the interaction

overhead is not considered in the simulation.

To solve this issue, I can use the quantified interaction overhead introduced in Section

2.5.7. In the previous section, I figured out that the interaction overhead of the interactive

62

Listen	to	a	new	
suggested	region.		

Fully	
covers	the	
sound?	

Click	<nega%ve>	
or	do	nothing.	

Labeled	
All	for	this	
round?	

Click	<Find	
similar	regions>	

N

Y Click		
<posi%ve>	

Adjust		
boundaries.	

Listen		
again.	

N

Y

N

Y

Loop 1 Loop 2

Has	a	
target	
sound?	

Figure 2.14. There are two bottlenecks (Loop 1 and Loop 2) in the interaction
flowchart of the interactive annotation.

annotator is 4.68. I can apply this value to the simulation result by stretching the graph

by 4.68 times on the x-axis. Figure 2.13 shows that applying this scaling factor makes the

estimated graph very similar to the result from the actual user study.

2.6. Discussion

In this section, I discuss the limitations of the proposed system in terms of user in-

teraction. As presented in Section 2.5.7, the interactive approach causes some amount of

interaction overhead compared to a fully automated system or manual labeling. One piece

of future work will be to redesign the interface to reduce the interaction overhead. I figured

out there are two bottlenecks in the interaction of my tool by analyzing the log of users’

behavior and their comments from the survey. Figure 2.14 highlights the two closed-loops

63

in the interaction flowchart presented in Section 2.4. In the experiment, users spent most of

their time in these two loops during the annotation task.

Loop 1 is a process where a user verifies negative examples. In the case that the length

of the initial query (i.e. a target sound example) is short and target sounds are sparse in

the audio (e.g. 5% of the audio), the user loops the process many times to verify negative

examples. In manual annotation, the process that verifies negative examples takes just as

much time as it takes to listen to the audio. In my annotation tool, a user has to click the

short regions to listen to them at most 5 times per round. In the experiment, it took an

average of 15 rounds for participants to label all target sound events. Based on this analysis,

one possible design choice for the future work would be to let a user listen to all 5 suggested

regions just by clicking a button once, instead of selecting each of selected regions to listen

to them. It would help users verify negative regions quickly.

In the Loop 2, users keep adjusting the boundaries of the suggested region while repeat-

edly listening to it. Some participants commented that even if a suggested region covers one

instance of the target sound, they had to listen to the audio before and after the suggested

region to understand the context and make sure the start and end of the selected region are

correctly positioned. In other words, verifying if there is no target sound around the sug-

gested region causes one or more unnecessary listening. Based on this feedback, one solution

to this issue for the next version of my tool would be to present a longer region to a user

than the actual length of the initial target sound.

Implementing these changes on the two bottlenecks in the interaction loop, the Loop 1

and Loop 2 should reduce the interaction overhead, allowing an even greater speedup of the

annotation process.

64

2.7. Conclusions

This chapter of my dissertation presented a new human-in-the-loop sound search method

to speed up human annotation of a long audio recording. I built the first general-purpose

sound labeling interface, I-SED where an interactive machine learning approach is applied

to sound event annotation. It helps a user quickly label target sound events in a long audio

file. I performed a human-subject study to evaluate its effectiveness. The result showed

that the proposed system lets users find sparsely-distributed target sounds roughly twice as

fast as manually labeling the target sounds. The survey response and free-form comments

showed that most participants were more satisfied with the interactive annotator against

the manual annotator. I expect I-SED to facilitate audio data collection and improve how

people understand sound scenes.

I also presented methods to measure interaction overhead and machine accuracy of the

proposed system. Since reducing the interaction overhead and increasing the machine ac-

curacy are two primary ways to speed labeling further, it is important to measure them

separately to evaluate the interface.

Finally, I discussed the limitations of the user interaction design of the proposed tool.

The interactive approach causes some amount of interaction overhead compared to a fully

automated system or manual labeling. I introduced two bottlenecks in the interaction of my

tool I found by analyzing the log of users’ behavior and their comments from the survey.

Therefore, a possible future direction of this work is to redesign the interface to reduce the

interaction bottlenecks.

65

CHAPTER 3

Improving sound search using vocal imitation

3.1. Introduction

Imagine a human annotator is labeling a recording using I-SED, presented in Chapter

2. The annotator found an interesting sound event in the recording, selected the event as

an initial query, and started the interactive search process to find more regions containing

sound events that are similar to the query. Once the query is submitted to the system, it

segments the audio recording to be searched into short chunks (e.g. a few seconds), ranks the

segmented audio of the recording by content similarity to the query and returns the n most

likely segments of the audio for the annotator to evaluate. This initial search process is an

example of Query-by-Example (QBE) audio search [37, 41, 59, 114, 48, 49, 119, 70, 16],

which lets a user provide an audio example (e.g. a recording of a dog bark) as a query to

find the desired sound (e.g. similar recordings of dogs barking). A QBE audio search system

measures the similarity between a query and recordings in a database and returns a set of

recordings sorted by the similarity.

The performance of QBE audio search depends on the quality of a user query (i.e.,

audio examples). If the query does not provide the right information to sufficiently narrow

the search, the target sound(s) will not be top-ranked in the retrieval results. This could

potentially slow down the interactive annotation process described above because the search

system will fail to find any sound events to be labeled as positive by a human annotator

during early rounds of the human-machine interaction loop. Therefore, it is very important

66

Query:
a dog bark (positive)
+ car engine (negative)

a dog bark car engine

Figure 3.1. An example of the problem on a query containing overlapping
sound events. Given such a query, the retrieval system does not know which
portion of the query is relevant to a sound event that a user wants to search.

for a user to provide the system with audio examples appropriately representing sound events

for which the user is searching so that the system successfully returns relevant sound events

to a user.

In this chapter, I focus on how to improve QBE audio search when an initial search result

is not satisfactory (e.g., no target sound is highly-ranked in the search results) due to the

low quality of a query. If a query is an audio file recorded of an actual sound scene, it often

contains multiple sound events overlapping each other. For example, a birdsong recorded in

a natural setting is often overlapped with other interspersed sounds in the recording such

as other bird species, dog barking, or a lawn mower. If a query contains such overlapping

sound events (i.e. positive and negative sounds), how does a search system know which

portion of the query is the one to focus on? Simply using a recording containing overlapping

sound events as a search key would make the system get confused about what constitutes

the positive sound (Figure 3.1). The retrieval results would get even worse when a positive

sound in a query is not the most prominent event in the overlapping region.

Figure 3.2 shows magnitude spectrograms of humans coughing, laughing, and a mixture

of the two. Figure 3.2(a) and (b) are isolated sounds of human coughing and laughing. If a

query to a search system is one of these isolated sound events, the system would capture a

67

0.2 0.4 0.6 0.8 1.0 1.2
Time(sec)

0

2500

5000

7500

10000

12500

15000

17500

20000

Fr
eq

ue
nc

y

(a) Cough

0.25 0.50 0.75 1.00 1.25 1.50
Time(sec)

(b) Laughing

0.25 0.50 0.75 1.00 1.25 1.50
Time(sec)

(c) Cough + Laughing

Figure 3.2. Magnitude spectrograms of humans coughing (a), laughing (b),
and a mixture of the two.

unique pattern of each sound class and return sound examples similar to the query. However,

if a query is mixtures of multiple sound sources including positive and negative sounds as

shown in Figure 3.2 (c), it is hard for machines to know which part of the recording is related

to the positive sound. The machine may even interpret the combination of sounds as the

sound event that does not belong to either the coughing or laughing classes. Thus, it would

probably lead to poor search results.

One way of overcoming the issue is to let a user specify the desired sound event in the

mixture by selecting sub-regions of a magnitude spectrogram with a visual editing interface

and separate the source from the mixture [11]. While visually selecting parts of interest in

a spectrogram is a good way of specifying a positive sound, a user might find it difficult to

know exactly which time-frequency bins of the spectrogram are related to the positive sound

in a mixture. As shown in Figure 3.2 (c), overlapping sound events make it hard for a user

to select only a single sound event from them because different sound events share many

of the same time-frequency bins in the spectrogram. Figure 3.3 shows an example of the

ideal selection of human laughing sound (dark red) from a mixture of laughing and coughing

sound events, which is hard to be obtained by a user’s manual selection. Even if it could be

68

0 0.5 1 1.5
Time (sec)

0

2500

5000

7500

10000

12500

15000

17500

20000
Fr

eq
ue

nc
y

(H
z)

Figure 3.3. Magnitude spectrograms of humans coughing and laughing. The
region associated with human laughing are colored in dark red.

possible, it would take a very long time to manually select the regions of the spectrogram

belonging to one of the sounds. This would need to be done for every single query where

there is overlap.

Another way of improving search accuracy, given a poor initial result, is to get user feed-

back indicating the relevance or irrelevance of a retrieved item which is known as Relevance

Feedback (RF) [91, 44, 66]. For example, given a search result (i.e., a list of sound events

sorted by the similarity with a query), a user labels recordings returned by the search sys-

tem as positive or negative. Then, the label information (i.e., relevance feedback) is used to

improve the search results. However, if none of the highly-ranked sound events in an initial

search result is relevant to a query and there is no sound event to be labeled as positive, then

improving the search system by user’s relevance feedback on returned items might not be

effective. Moreover, if a recording returned by the system contains overlapping sound events,

69

adding a positive or negative label to the recording does not make it clear what aspect of

the audio is positive or negative.

My approach to improving QBE audio retrieval in the case of an example containing

multiple overlapped sounds is to let a user provide the system with a new sound example

by imitating sound events of interest in a query recording of an audio scene (e.g., adding a

vocal imitation of a query recording of a ‘dog barking’ recording, like the one in Figure 3.1).

Even when a query contains multiple overlapping sound events, if a user is able to identify

isolated sound events and imitate what they do or do not want, it is equivalent to providing

additional positive or negative examples to the search system.

Vocally imitating sounds is a simple and quick way to describe sound events. It is

a very effective method to communicate an audio concept between people [63, 62]. Vocal

imitations also have obtained attention as an input modality in human-computer interaction.

For example, vocal imitations have been used for sound synthesis and design [87, 39, 16, 70].

They also have been used as a search key for melody search in a music database [30, 41]

and environmental sound retrieval [117, 6, 89].

In my work, I use a user’s vocal imitation as additional information to differentiate a

positive sound from a negative sound in a query containing both of them for audio search.

Even if a user’s vocal imitation does not sound identical to the original recording, it has been

shown that vocal imitations represent key characteristics of the original sound event and are

recognizable by audio search systems [17, 120]. Vocal imitations of a sound event can

quickly (seconds) highlight what aspect of a query recording is positive or negative, which is

impossible to achieve with a simple text label for the whole file (e.g. positive or negative),

and very slow (minutes or hours) with text annotation of subregions of the spectrogram.

70

Therefore, a user can give the system more detailed information about sound events in the

query by imitating them to improve the retrieval results.

3.1.1. Contributions

My contributions of this chapter are the followings:

(1) I present a new feature extractor to generate audio embedding to measure the sim-

ilarity between a vocal imitation and an actual sound event, which is necessary to

utilize vocal imitations as additional labeled sound examples for search. I show

that the feature extractor outperforms other existing methods by performing an

experiment on vocal imitation-based audio retrieval.

(2) I propose a new way of updating query-by-example search results using user’s vocal

imitations of positive and negative sound events in a query recording containing

overlapping sound events. A user can simply provides vocal imitations to illustrate

what they do or do not want in a query. My work is the first system that uses vocal

imitations to update a query and improve QBE search. Especially, none of prior

works has focused on imitating what they do not want. This chapter is the first

study to show the effectiveness of negative vocal imitations for audio search.

(3) I created Vocal Imitation Set, a largest crowd-sourced vocal imitation dataset to

evaluate the effectiveness of vocal imitations on improving query-by-example audio

search. Vocal Imitation Set is the first dataset of vocal imitations that uses a widely-

used ontology, AudioSet ontology [29] and it has more than double the number of

imitations available in existing vocal imitation datasets [17].

71

(4) The experiments show that not only imitating what they want (positive imitation),

but also imitating what they do not (negative imitation) helps a search system

improve the retrieval result.

3.2. Method

3.2.1. Feature extraction and similarity measure

Feature extraction plays a very important role in building a content-based audio retrieval

system. Raw recordings including a query and items in a database need to be converted

into feature vectors so that the system can find similar items to the query in the feature

space. High-performing features that capture acoustic characteristics of various classes of

sound events map recordings into the lower dimensional feature space in a way that similar

sound events are grouped together in the feature space. Then the system can find relevant

recordings by using a simple similarity measure such as cosine similarity (see Figure 3.4).

Recently, deep learning models have been successfully applied to various audio classifi-

cation tasks and many of them use convolutional layers as a feature extraction part of the

model [38, 54, 20, 55, 83, 19, 68, 57]. These models consist of convolutional neural

networks (CNN) as a base model for audio feature extraction followed by various types of

networks for their specific tasks. Once these models are trained on a large dataset, the

trained convolutional layers of the models can be reused as a feature extractor of other mod-

els [42, 21, 75, 40, 4, 57]. This is very useful when a deep learning model needs to be

trained on limited data for a specific task. A pre-trained CNN model that captures general

audio features helps to reduce the number of trainable parameters of a model.

In my work, I leverage the embedding created from a large set (millions) of audio examples

to build a general similarity measure for query-by-example audio retrieval. I utilize the

72

query

…

Database

Audio embedding
model

n - dimensional feature space

A query

: target recordings

: irrelevant recordings

Figure 3.4. An audio embedding model maps recordings into the feature space
in a way that similar sound events are grouped together. This makes it easier
to find similar sound events to a query using a simple distance or similarity
measure such as euclidean distance or cosine similarity

VGGish model which is a publicly-available 1 audio embedding model that has been created

by training the modified VGGNet [98]. The VGGish model was trained on the audio from 8

million YouTube videos to distinguish 3,000 sound classes. I chose the VGGish model because

it has been successfully used in many prior works to generate input features of audio to train

a model on limited data for environmental sound classification [40, 51, 46, 45]. Figure 3.5

shows the architecture of the VGGish model. It consists of 6 convolutional layers, followed

by 3 fully-connected layers. It takes a 1-second segment of an audio recording and output

128-dimensional feature embedding.

1https://github.com/tensorflow/models/tree/master/research/audioset/vggish

73

Mel-spectrogram (1 second)

Conv (3x3, 64) -> Relu-> MP

Conv (3x3, 128) -> Relu-> MP

Conv (3x3, 256) -> Relu

Conv (3x3, 256) -> Relu-> MP

Conv (3x3, 512) -> Relu

Conv (3x3, 512) -> Relu-> MP

L1

L2

L3

L4

L5

L6

FC (4096) -> ReluL7

L8

L9

FC (4096) -> Relu

FC (128) -> Relu

128-dimensional vector

6 convolutional
layers

3 fully-connected
layers

Figure 3.5. The architecture of the VGGish model [38]. It consists of 6 convo-
lutional layers followed by 3 fully-connected layers. It takes a 1-second record-
ing and output a 128-dimensional feature vector. The number of filters and
their size information of convolutional layers are denoted as (width × height,
channels) in each layer block. All convolution operations are performed with
a stride of 1. MP indicates max pooling operation with a kernel size of 2x2
and a stride of 2. Relu activation functions are used for every convolutional
layer.

I modified the VGGish model to build a feature extractor for my retrieval system in

the following ways. First, I use only its convolutional layers (L1 to 6 in Figure 3.5). Fully-

connected layers of CNNs are considered classification layers for more specific tasks. I believe

74

using only convolutional layers enables us to extract more general level audio features. Sec-

ond, the VGGish model takes a fixed length of an audio segment. I changed the input

pipeline and added global average-pooling operation so it can take an arbitrary length of a

recording while generating a fixed dimensional feature vector. Third, the outputs from each

intermediate convolutional layer in the model can be considered different representations of

the audio input. I combined outputs from multiple convolutional layers to generate a feature

vector. I will call the modified version of VGGish M-VGGish throughout the remaining

sections of this dissertation.

Another important requirement for designing my retrieval system is that the feature

extractor also should capture acoustic characteristics of vocal imitations since my approach

to improving QBE search is to use users’ vocal imitations. Zhang et al. [119, 120, 118]

have shown that a Siamese style two-tower network (TL-IMINET), given a vocal imitation,

successfully finds its original recording (the recording the vocal imitation was an imitation

of). The network model takes a vocal imitation as one input and an audio recording from

the collection as the other, returning a similarity value for the pair. The limitations of their

models are that they were trained on a small number (thousands) of vocal imitations and

take fixed-length audio (a 4-second frame) as input. I chose M-VGGish to extract features

of vocal imitations through the experiments (The experiment will be presented in Section

3.4.1). The experiment result shows that M-VGGish outperforms TL-IMINET and VGGish

in measuring the similarity between a vocal imitation and an actual sound event.

Figure 3.6 shows the architecture of M-VGGish. An audio file is first transformed into a

log mel-spectrogram (64 Mel bins, a window size of 25 ms and hop size of 10 ms). This is

passed to the M-VGGish model. It takes the whole audio file (the audio may be of variable

length) as an input. It uses the outputs of the last two convolutional layers, L5 and L6. I

75

Mel-spectrogram (t x 64)

Conv (3x3, 64) -> Relu-> MP

Conv (3x3, 128) -> Relu-> MP

Conv (3x3, 256) -> Relu

Conv (3x3, 256) -> Relu-> MP

Conv (3x3, 512) -> Relu

Conv (3x3, 512) -> Relu

Concatenate

A feature vector

L1

L2

L3

L4

L5

L6

Pool &
flatten

Pool &
flatten

(Size: 8 x 512)
flatten

A feature vector
(Size: 4096)

L5 or L6

(Size: t x 8 x 512)

Average pooling over t

Pool & flatten

Figure 3.6. The proposed CNN-based feature extractor. The information for
each filter is denoted as (width × height, channels) in each layer block. MP
indicates max pooling operation. Relu activation functions are used for every
convolutaional layer. Outputs from layer 5 and 6 are concatenated to build a
single feature vector

explored various combinations of the layers and these showed the best representation powers

on a preliminary experiment. I believe that higher layers (L5 and L6) capture relatively more

complicated patterns than lower layers (L1 to L4), which leads to generating high-performing

features. The size of the output from L5 or L6 is (t, 8, 512) where t depends on the length

of input audio. Then, the output is averaged over t (average pooling) and flattened into a

76

feature vector with the size of 4096. Finally, the outputs from these two layers (i.e., L5 and

L6) are concatenated to form a feature vector for an audio example.

The M-VGGish feature extractor is length-agnostic and can take input of arbitrary length.

This is very useful features because the lengths of users’ vocal imitations often vary across

people or multiple trials from a single person. A search system with M-VGGish feature

extractor does not need to deal with any segmentation for a vocal imitation. The M-VGGish

feature extractor is publicly available.2

Once feature embeddings (the output of M-VGGish) are obtained for sound events, the

similarity between two sounds is calculated using cosine similarity in the embedding space.

I chose cosine similarity over p-norm distance measure because of its normalization factor.

Even if two sound events are acoustically similar, their loudness could be very different.

The difference might become more obvious when measuring the similarity between a vocal

imitation and an actual sound event. The cosine similarity between two sound events, x and

y is computed as follows:

(3.1) C(x, y) =
< x, y >

‖x‖‖y‖
,

where < x, y > is inner-product between x and y, and ‖x‖ is euclidean-norm of x.

3.2.2. Updating search results by vocal imitations

In this section, I present methods to use vocal imitations to update the similarity between

a query and recordings in a database. Suppose a user has a recording they wish to use as a

query, but it contains multiple overlapping sounds. For example, if the query is a birdsong

2https://github.com/bongjun/M-VGGish

77

recorded in a natural setting, the example may also contain dog barking, lawn mowers,

etc. Given the noisy query, the search system returns a list of sound events sorted by their

similarities to the query and none of the highly-ranked items is the sound event of interest.

My approach to this problem is to let a user to imitate the negative (irrelevant) sound

event in the query (i.e. negative imitation) or imitate the positive (relevant) sound event

in the query (i.e. positive imitation). The user’s vocal imitations are considered additional

user-provided audio examples of a positive and negative sound event in a query recording.

Positive and negative vocal imitations provide the system with the information about

what sound events of interest should and should not sound like. It is quite obvious that

imitating a positive sound event in a query (positive imitation) can improve the QBE audio

search since vocal imitations have been successfully used as a query in exiting audio search

systems [119, 120, 6, 89, 41]. However, it is also very effective to use negative imitation in

improving QBE audio retrieval. Since the poor search result is due to negative sound events

overlapped with the positive event in a query, highly-ranked items in the search results could

be recordings that sound similar to the negative sound in a query. Negative vocal imitations

can be used as information to allow the system to update the initially measured similarity of

the query with items in a database in a way that the highly-ranked, but irrelevant recordings

are pushed to the lower position in the search result.

My work is the first audio search system that allows a user to provide negative vocal

imitations. This is very useful when a positive sound event in a query is hard to vocally

imitate (e.g., complex machine sound), but a negative sound event is easy to imitate (e.g.,

cat meowing). I will report the experimental results in Section 3.4 showing that providing

only negative imitations to the search system also improves the retrieval result although the

best performance gain can be achieved by providing both positive and negative imitations.

78

In this section, I present two different methods to update a search result using vocal

imitations: ensemble method and query expansion method. Later in this chapter, I perform

experiments using both methods (read Section 3.4.2).

3.2.2.1. Ensemble method. The search system uses each of the two types of queries

separately (an actual sound and vocal imitations) and combines the outputs of each retrieval.

This technique can be thought of as an ensemble method where slightly different estimations

from a model on the same task are combined to generate more robust results. In other

words, my search system combines a result from query-by-example search with one from

query-by-vocal imitation searches given positive and negative imitation queries.

How the system updates search results, given positive and negative imitations of a query,

is the following. First, given a query containing real sound events, the search system measures

the similarity between the query and other recordings in a database. When a positive vocal

imitation and negative vocal imitation are given, the similarity between the query and a

recording in the database is updated by the similarity between each of the vocal imitations

and the recording in the database. The updated similarity S between a query q and a

recording in a database x is computed as:

(3.2) S(q, x) = C(q, x) +
α

Nvp

Nvp∑
i=1

C(vip, x)− β

Nvn

Nvn∑
i=1

C(vin, x)

where C(·) is cosine similarity, vin is a ith vocal imitation of an irrelevant sound in the query

(Nvn in total), and vip is a ith vocal imitations of a negative sound in the query (Nvp in total).

α and β are hyper-parameters controlling the importance factors of positive and negative

imitations that can be determined through experiments. (I set α = 1 and β = 1 in the

79

experiment of Section 3.4). The system can flexibly accommodate one or more negative and

positive imitations from a user.

One advantage of processing actual sound query and vocal imitation query separately is

that the system can run two different search methods (i.e. feature extractions and matching

algorithms) that are designed for each type of query. I used M-VGGish and cosine similarity

for both types of quires because the experiments showed that they also outperformed exit-

ing vocal imitation-based search models [119, 118] and recently released audio embedding

models [22, 38] (Read Section 3.4.1 for more details). However, the ensemble method leaves

us an opportunity that one can use two different similarity measures for query-by-example

search and query-by-vocal imitation search depending on the performances on their own

tasks.

While the ensemble method allows to use different similarity measure for vocal imita-

tions, it might be computationally expensive because the system has to process every vocal

imitation separately as additional queries. For example, given a query with a positive imita-

tion and a negative imitation, the system performs three different searches in parallel. I will

present another method that does not require multiple parallel searches in the next section.

3.2.2.2. Query expansion. To update search results using the ensemble method, each

of vocal imitations that are provided to the system is treated as an additional query and

multiple searches need to be performed in parallel. In this section, I present another way

of using vocal imitations to update the search results where a query itself (a real sound) is

expanded by user’s vocal imitations before the search process starts so the search can be

performed only once with the updated query.

I used the Ricchio algorithm [88] which is one of the earliest query expansion methods

and has been used for interactive document retrieval [113, 107]. The idea is to create a new

80

query vector that is a combination of the original one (a real sound event) and the vocal

imitation ones (positive and negative). The new query vector is closer to positive imitation

vectors and farther to negative imitation vectors than the original query in the feature space.

Given an old query qold and user’s vocal imitations, the new query qnew is computed as:

(3.3) qnew = qold +
α

Nvp

Nvp∑
i=1

vip −
β

Nvn

Nvn∑
i=1

vin

where vin is a ith vocal imitation of an irrelevant sound in the query (Nvn in total), and vip

is a ith vocal imitations of a positive sound in the query (Nvp in total). α and β are the

importance factors of positive and negative imitations.

To use the query expansion method with vocal imitations, it is important to generate

a feature embedding space where real sound events and vocal imitations can be directly

compared. I use my feature extractor presented in Section 3.2.1, M-VGGish to generate

feature embedding for both real sound events and vocal imitations, then update the query

vector using positive and negative imitation vectors. The updated query vector is compared

with items in the database by cosine similarity (Equation 3.1). In the experiment (Section

3.4.1), I will show that M-VGGish features with cosine similarity successfully measure the

similarity between real sound and vocal imitations.

3.3. Dataset: Vocal Imitation Set

To evaluate the effectiveness of users’ vocal imitations on improving QBE audio search,

I need a dataset containing various sound events and human’s vocal imitations of them. I

created Vocal Imitation Set, a new crowd-sourced vocal imitation dataset to use to evaluate

the proposed QBE search methods. It is the first dataset of vocal imitations that uses

AudioSet ontology [29] which is a widely-used ontology of environmental sound. Moreover,

81

Vocal Imitation Set has more than double the number of imitations available in the largest

prior vocal imitation dataset [17, 69]. It includes 5,601 vocal imitations of 302 sound classes.

In the following sections, I present how the dataset was collected and evaluated.

3.3.1. Data collection

3.3.1.1. Reference audio collection. To collect human vocal imitations, it is an essen-

tial step to collect audio recordings to imitate (i.e., reference recordings). Since my goal

for this data collection is to create a vocal imitation dataset that can be used to evaluate

the effectiveness of vocal imitation on general QBE audio search, the set of sound classes

should cover a wide range of sound events. Therefore, I selected sound classes from the

AudioSet ontology [29]. This ontology contains 632 sound classes that are structured hierar-

chically with a maximum depth of 6 levels. The top-level categories include Animal sounds,

Channel/environment/background sounds, Human sounds, Music, Natural sounds, Sounds of

things, and Source-ambiguous sounds.

The sound classes in the AudioSet ontology were manually curated to represent a broad

set of audio events one might encounter in real-world recordings and each class is assumed to

be distinguishable from other classes based on sound alone without any additional informa-

tion (e.g., visual cue or details of context). For each sound class, AudioSet provides links to

YouTube videos that were tagged with the text label for that class. The audio tracks from

these videos typically contain multiple, overlapping sounds. Perhaps, for this reason, audio

from these YouTube videos has been widely used as a benchmark dataset for sound event

detection and scene classification [57, 54]. For more details about AudioSet, refer to [29].

The AudioSet ontology contains many sound classes that cannot be readily imitated

vocally, such as guitar amplifier and labels related to music genres. After excluding these

82

classes, 302 sound classes from the AudioSet ontology remained. AudioSet’s actual audio

typically contains scenes with multiple sounds, rather than isolated sounds. Since the goal

of my data set is to provide clear pairings of vocal imitations to reference sounds, this

makes AudioSet’s audio sub-optimal. Therefore, I collected sounds from a repository where

contributors typically provide isolated, single-sound recordings. For each of the 302 selected

sound classes, I collected an average of 10 audio recordings from Freesound using the class

name as the search key. All files were truncated to a maximum of 20 seconds and encoded

in the WAV format with a sample rate of either 44.1 kHz or 48 kHz.

A single high-quality recording was selected from the collected recordings for each class

as a reference recording to be imitated by crowd-workers. Each reference audio file was

confirmed to contain a clear sound event for the selected sound class and no other sound

events. The other recordings that were not used for imitation collection. The other recordings

that were not used for imitation collection are also included in the released dataset. In the

experiment section of this chapter, these recordings are used as items in a database for QBE

audio search where the task is to search for sound events similar to a query.

3.3.1.2. Vocal imitation collection. I collected vocal imitations from crowd-workers

through Amazon Mechanical Turk using the VocalSketch interface and protocol presented in

[17]. Imitators were asked to listen to a reference recording (i.e., one of the 302 collected ref-

erence recordings) and imitate the sound. During the recording session, no text-label of the

recording was provided to the participants. Once they recorded their imitations, they were

required to listen to their imitations to compare them with the reference recording. They

were allowed to re-record their vocal imitations unlimited times before submitting the final

one. Discarded imitations were saved as draft recordings in the released dataset. Finally,

each imitator was asked how satisfied they were with their imitations using a 7 level scale.

83

In each session, imitators were given five reference recordings (one recording from each class)

to imitate. Imitators were paid $0.80 per session. The first imitation of each imitator in a

new session was saved as a training recording.

I collected a total of 11, 242 recordings from 455 unique people. There were 6, 115 final-

submission vocal imitations, 4, 444 draft recordings and 683 training recordings. The 6, 115

final submission vocal limitations resulted in an average of roughly 20 imitations for each

of the 302 reference recordings. I focused on this set of final submissions in the quality

assessments of the dataset.

3.3.2. Quality assessment

Crowd-sourced data collection suffers from noisy data in many cases. Therefore, I conducted

a quality assessment of the 6, 115 final submissions, where experts evaluated the quality of

all the final collected imitations. Training and draft vocal recordings were not evaluated.

The purposes of the quality assessment are the following: 1) removing non-identifiable vocal

imitations from the data set, and 2) measuring perceptual similarity between a reference

recording and its imitations. The people who performed quality assessment were experts in

audio processing: students and researchers from the Interactive Audio Lab 3 at Northwestern

University and the Audio Information Research Lab 4 at the University of Rochester. There

were, in total 15 evaluators, who listened to 6, 115 vocal imitations on a web interface

designed for this particular listening task.

Figure 3.7 shows the web interface for the quality assessment. A single session consists

of listening to a pair of recordings: one reference and one vocal imitation (Sound A and

3http://music.cs.northwestern.edu/
4http://www.ece.rochester.edu/projects/air/

http://music.cs.northwestern.edu/
http://www.ece.rochester.edu/projects/air/

84

Figure 3.7. A screenshot of the interface for the internal quality assessment

Sound B in Figure 3.7). An evaluator was first asked if the imitation was a vocal imitation

of the reference recording. If the answer was “YES”, then the evaluator was asked to assess

the quality of the imitation on a scale from 0 to 100 (0: a very poor imitation; 100: almost

identical to the reference sound). If the answer was “NO”, then the recording was not

evaluated for quality and it was placed in the excluded directory of the released dataset. The

evaluator was then asked if the recording was a vocal imitation at all and this answer was

saved.

Due to the size of the dataset, each imitation was evaluated by a single person. To

measure the consistency and reliability of each evaluator, I designed the task in the following

ways. First, an average of 2 out of every 30 pairs evaluated by an individual were incorrect

pairs, where I paired an imitation with a reference recording that it was not an imitation of.

85

0 10 20 30 40 50 60 70 80
Rating difference

0

200

400

600
Fr

eq
ue

nc
y

Figure 3.8. Histogram of maximum differences of quality ratings on a 100 point
scale between two presentations of the same pairing of reference and imitation
recording (Mean: 7.63, SD: 10.96)

This lets us measure how reliably evaluators were able to detect incorrect pairs. Second, an

average of 4 out of every 30 pairs presented to an evaluator were repeated pairs, previously

presented within the current batch (30 pairs). This let us measure the evaluation consistency

for each evaluator.

In total, 452 incorrect pairs were presented to evaluators and 80% of them (363 pairs)

were successfully identified as incorrect pairs. The remaining 20% (89 pairs) were incorrectly

called correct pairs and they were given an average quality rating of 31.4 out of 100. The

mean quality rating across all imitations is 60.3. This indicates that most evaluators correctly

identified wrong pairs or gave them low scores if they called them a correct pair. Figure

3.8 shows how consistently evaluators rated repeated pairs. In total, 978 unique pairs of

reference and imitation recordings were repeated. We computed the maximum difference of

the multiple ratings to each of the 978 repeated pairs. For example, if a pair of reference

86

1 2 3 4 5 6 7
Satisfaction (level 1 to 7) from imitators

0

20

40

60

80

100

ra
tin

gs
 fr

om
 e

va
lu

at
or

s

Figure 3.9. Relationship between self-satisfaction scores by imitators and qual-
ity assessment by evaluators.

and imitation recording was repeatedly rated three times by an evaluator and the ratings

were 50, 60 and 70, then the maximum difference is 20 (70-50). As shown in Figure 3.8, the

maximum differences of a majority of repeated pairs is very low (Mean: 7.63, SD: 10.96),

which indicates that our evaluators rated vocal imitations with high consistency.

When collecting imitations, imitators were asked how satisfied they were with their own

imitation using a 7 level scale. (1 - completely dissatisfied, 2 - mostly dissatisfied, 3 - some-

what dissatisfied, 4 - neither satisfied or dissatisfied, 5 - somewhat satisfied, 6 - mostly

satisfied, 7 - completely satisfied). Figure 3.9 shows how the evaluator’s ratings change with

different self-satisfaction levels from imitators. As shown in the figure, there is a positive

correlation between the imitators’ self-satisfaction levels and evaluators’ quality assessment

87

scores with Pearson correlation coefficient of 0.98 between mean ratings and satisfaction

scores. Yet, there are some limitations where the imitator’s self-satisfaction disagrees with

the quality reported by an evaluator. It would be interesting future work to learn the reason

for the dichotomy.

Evaluators reported that 514 vocal imitations were not vocal imitations of the reference

sound played to the imitator who made the imitation. These recordings were placed in

the excluded directory of the released dataset. This left 5, 601 recordings that have quality

ratings, which are saved in the included directory of the dataset. I did not perform any

additional filtering by rating values we collected because it is not easy to set thresholds for

that. I included all the quality ratings on these 5, 601 recordings in the released dataset so

that other researchers can refer to them for their own purposes.

3.3.3. Summary of dataset

Vocal Imitation Set is now publicly available5. It includes 2, 985 original recordings of 302

classes (an average of 9.89 per class) and 11, 242 vocal imitations of 302 reference recordings

selected from the set of original recordings (1 reference recording per class). The set of

vocal imitations consists of 5, 601 imitations that passed the quality assessment as well as

5, 642 recordings of draft, training recordings, and imitations excluded during the quality

assessment. Table 3.1 shows the number of classes, listener-vetted imitations (i.e., imitations

that have quality ratings), and original recordings for each top-level classes of the AudioSet

ontology. Figure 3.10 shows a histogram of quality assessment ratings of the 5, 601 listener-

vetted imitations. The collected ratings give researchers another opportunity to build more

robust vocal imitation-based interaction systems by using human quality assessments as a

5http://doi.org/10.5281/zenodo.1340763

http://doi.org/10.5281/zenodo.1340763

88

Table 3.1. The number of classes, listener-vetted imitations, and original
recordings (including reference recordings) for each of the first-level categories
in Vocal Imitation Set

Categories Classes Imitations Original Rec.

Animal 31 587 308
Channel, environment and
background

4 74 40

Huma sounds 38 714 375
Music 65 1247 646
Natural sounds 10 177 100
Sounds of things 134 2448 1316
Source-ambiguous sounds 20 354 200
Total 302 5601 2985

0 20 40 60 80 100
Rating

0

200

400

600

800

Fr
eq

ue
nc

y

Figure 3.10. Histogram of quality assessment ratings to 5, 601 vocal imitations
that were vetted by evaluators (Mean: 60.3, SD: 25.3)

training signal. In the next section, I use Vocal Imitation Set to evaluate my approach to

improving QBE audio search using users’ vocal imitations.

89

3.4. Evaluation

I perform a set of experiments to evaluate the proposed methods. First, I evaluate the new

feature extractor M-VGGish by comparing it with other existing solutions. Then, I perform

experiments to evaluate how much vocally imitating sound events in a query improves QBE

audio retrieval. The goal is to answer the following questions:

• Q1) Is M-VGGish effective in measuring the similarity between a vocal imitation

and a real sound event?

• Q2) how does a query containing positive and negative sounds overlapping each

other affect QBE search?

• Q3) Does a vocal imitation of the positive sound in a query (positive vocal imitation)

improve the search performance?

• Q4) Does a vocal imitation of the negative sound in a query (negative vocal imita-

tion) improve the search performance?

• Q5) Is using vocal imitation of both the positive sound and negative sound in a

query more effective in improving the search performance than using only either of

them?

3.4.1. Experiment-1: Evaluation of M-VGGish model

Since my proposed approach to improving QBE audio search is to use user’s vocal imitations,

it is important to extract high-performing audio embedding to measure the similarity between

a vocal imitation and a real sound event. Therefore I presented a new audio embedding model

M-VGGish in Section 3.2.1. In this section, I performed the experiments to choose a feature

90

Ranking

…

A query
(Vocal imitation)

Database
(Real sounds)

Dog
bark

Figure 3.11. Query-by-Vocal imitation audio retrieval. A vocal imitation
recording of a category (e.g., Animal) is a query (e.g., a vocal imitation of
a dog bark). Then, reference recordings (real sounds) of the category become
the database to search through. The task is to find a real recording that is the
most similar to a vocal imitation query.

extractor to be used for my proposed method to update audio search, answering the research

question Q1. I compare the M-VGGish model with other existing methods.

I evaluate methods to measure the similarity between a vocal imitation and a real sound

event by performing vocal imitation-based audio search. The task is to search for a recording

containing a sound event in a database given a vocal imitation of the sound event as a query.

The QBV retrieval results would tell us how accurately the system measures the similarity

between a sound event and its vocal imitation (i.e. query).

3.4.1.1. Dataset. To perform the QBV retrieval task, I selected a subset of Vocal Imitation

Set presented in Section 3.3 as a testing set: a set of vocal imitations and their reference

recordings. Vocal Imitation Set contains 7 categories of sound events and each category has

a different number of sound classes as shown in Table 3.1. I selected 5 categories that contain

more than 20 sound classes: Animal (31), Human sounds(38), Music (65), Sound of things

(134), and Source-ambiguous sounds (20). Each class contains a single reference recording

and about 20 vocal imitations of the reference recording.

91

3.4.1.2. Setting. Figure 3.11 illustrates Query-by-vocal imitation audio retrieval. I per-

form within-category retrieval with the dataset. Each vocal imitation in a category (e.g.,

Animal category) is used as a query and the set of reference recordings of the category (e.g.,

31 reference recordings of Animal category) become items in a database that the search

system needs to search through to find the target recording. For example, given a vocal imi-

tation of a dog bark, the system searches through 31 reference recordings of Animal category

to find a real dog bark sound. Each query (vocal imitation) is compared to each reference

recording (an actual sound event) in the database and all recordings in the database are

then ranked by their similarity to the vocal imitation.

To measure the success of the retrieval, I compute Mean Reciprocal Rank (MRR) of the

target reference recording as following

(3.4) MRR =
1

N

N∑
i=1

1

ranki
,

where N denotes the number of queries and ranki indicates the rank position of the reference

recording correspond to the ith vocal imitation query. For example, MRR of 0.5 means that

target reference recordings were retrieved at rank 2 on average.

Based on the performance measure, the proposed feature extractor, M-VGGish is com-

pared to three existing deep neural network-based methods:

• TL-IMINET [119]: A Siamese style two-tower deep network designed specifically

for QBV audio search. It is composed of two convolutional neural network (CNN)

towers that feed into several fully connected layers to combine outputs from the two

CNN towers. Each tower takes a real recording and a vocal imitation respectively

92

and outputs the similarity between them. I trained the model following their training

procedure as described in [119].

• VGGish [38]: The original version of M-VGGish. It takes 1 second of audio and

output 128-dimensional embedding. The pre-trained model is publicly available 6. I

used the model to extract features from recordings. When extracting features from

a recording longer than 1 second, features of a non-overlapping 1-second window of

the recording are averaged. To measure the similarity between recordings, I compute

Cosine similarity in the feature space.

• OpenL3 [22]: An open-source Python library for deep audio embedding. It is based

on the approach known as Look, Listen and Learn (L3-Net) [3]. The model is

trained in a self-supervised manner to detect matched video and audio pairs. The

models provided in the library have been trained on 296K and 195K videos includ-

ing music and environmental sounds respectively. These videos were selected from

AudioSet7.For more details about the L3-Net model, read [3]. The library provides

variants of models with different input representations and training data domains.

I choose the setting that has shown the best performance on sound classification in

[22]: Mel-spectrogram with 256 Mel bins for an input representation and music for

training data domain. The trained model takes 1-second of audio and outputs 6144-

dimensional embedding. When extracting features from a recording longer than 1

second, features of 1-second windows of the recording are averaged. To measure the

similarity between recordings, I compute Cosine similarity in the feature space.

6https://github.com/tensorflow/models/tree/master/research/audioset/vggish
7https://research.google.com/audioset/

93

Table 3.2. MRRs of the three retrieval systems on 6 sub-categories of Vo-
cal Imitation Set. The number of queries (vocal imitations) and items (real
sounds) to search through for each category is following: Animal (587 queries,
31 items), Human sound (714 queries, 38 items), Music (1247 queries, 65
items), Sound of things (2448 queries, 134 items), and Source-ambiguous (354
queries, 20 items).

Category M-VGGish TL-IMINET [119] VGGish [38] OpenL3 [22]

Animal 0.351 0.189 0.225 0.278

Human sound 0.372 0.194 0.249 0.263

Music 0.181 0.119 0.117 0.141

Sound of things 0.113 0.071 0.066 0.087

Source-ambiguous 0.302 0.269 0.217 0.233

3.4.1.3. Results. Figure 3.2 compares within-category retrieval performances of M-VGGish,

TL-IMINET, VGGish, and OpenL3. It shows that the proposed similarity measure, M-

VGGish outperformed the three models for all 6 categories of sound. The performance

difference between M-VGGish and other models is statistically significant for all the cate-

gories (a Wilcoxon signed-rank test, p < 0.05). Moreover, M-VGGish has a fewer number

of parameters (4.5M) than the second and third best models, OpenL3 (4.5M) and VGGish

(62M), which makes M-VGGish even more preferable.

In the remaining experiments, I use M-VGGish model as a feature extractor for both

real sound event recordings and vocal imitation recordings when measuring the similarity

between them. I also use the same method to compare two real sound events, which is not

possible with TL-IMINET.

94

3.4.2. Experiment-2: Evaluating of query-by-example search with vocal imita-

tions

In this section, I evaluate the effectiveness of vocally imitating sound events in a query

in query-by-example audio retrieval to answer the research questions Q2 to Q5 listed at

the beginning of Section 3.4. The experiment result will provide evidence that user’s vocal

imitations can improve the initial QBE search of the interactive annotation process presented

in 2.

3.4.2.1. Dataset. I use Vocal Imitation Set presented in Section 3.3 as a testing set. It

contains about 10 original recordings (real sounds) per class. One of the original recordings

that has its vocal imitations is called a reference recording and it is used as a query. This

experiment also used the same 5 categories of Vocal Imitation Set as the previous experiments

did in Section 3.4.1. The number of queries for each category is the following: Animal (31),

Human sounds(38), Music (65), Sound of things (134), and Source-ambiguous sounds (20).

All the other original recordings that are not a reference recording become a set of items in

a database that the system needs to search through to find relevant items (recordings) given

a query. The number of items to search through for each category is the following: Animal

(277), Human sounds(337), Music (581), Sound of things (1,182), and Source-ambiguous

sounds (180)

To simulate the situation where QBE search might fail because of a query containing

overlapping sound events, I created a set of difficult queries by mixing two recordings selected

from a set of reference recordings for each category. Each reference recording is mixed with

another randomly selected reference recording of a category. I call the set of the queries

Mixed-queries. I also call the original reference recordings (not mixed), Clean-queries. The

95

A query

Searching

5 most similar
recordings returned

Any relevant
recordings
found?

Evaluating
the result

NO

YES

Sorting recordings
in a database

Updating
the initial
search results

Figure 3.12. The experiment scenario to evaluate the effectiveness of user’s
vocal imitations in query-by-example audio retrieval. The database to search
through includes sound events that are similar (belonging to the same class)
to sound events in a query. The task is to find several sound events that are
similar to the positive sound in the query. If the 5 top-ranked items do not
include sound events of interest, the search results get updated by vocal imi-
tations.

Clean-queries is used to obtain upper-bound retrieval performance of my search system as a

reference in this experiment.

3.4.2.2. Setting. The task in this experiment is to find multiple relevant recordings (an

average of 9 per query) that sound similar to a sound event of interest in a mixed query. Any

of the relevant recordings in a database is not identical to any sound events in a query. They

just belong to the same class. For example, if a query contains a dog bark and car engine

sounds and the event of interest is a dog bark, then the goal is to find roughly 9 different

dog barks in a database.

To measure the performance gain by the user’s vocal imitations, I simulated a user’s

interaction with the search system as shown in Figure 3.12. Given a query recording, the

96

Table 3.3. Mean Recall@10 of within-category QBE retrievals for the five dif-
ferent search scenarios. The Ensemble method was used to update the search
results with vocal imitations.

Category Clean Mixed Mixed+Pos Mixed+Neg Mixed+Pos+Neg

Animal 0.434 0.262 0.315 0.272 0.369

Human sound 0.376 0.192 0.223 0.238 0.282

Music 0.38 0.21 0.254 0.251 0.286

Sound of things 0.298 0.157 0.178 0.177 0.189

Source-ambiguous 0.389 0.106 0.144 0.133 0.167

system returns a list of recordings in the testing set ordered by similarity with the query. If

the n top-ranked recordings do not include any of the relevant recordings, vocal imitations

are provided to improve the search results. I set n = 5 for this experiment to simulate the

first round of the interactive searching presented in Chapter 2.

To measure the performance of QBE retrieval, I compute two performance metrics: Re-

call@10 and Max-MRR. Recall@10 measures recall within the top 10 items in search results.

For example, Recall@10 of 0.7 means that 70% of target recordings are retrieved within the

top 10 items of the search results. Recall@10 is a more appropriate measure than preci-

sion@10 since many classes in the testing set contain less than 10 target sound events so I

am measuring the proportion of retrieved relevant items to the total number of target events

for each class. I report the Mean Recall@10 across all the queries of a category. Max-MRR

measures MRR of the highest-ranked target item in a search result. It evaluates how quickly

a user can find the first sound event of interest during rounds of the interactive annotation

process.

3.4.2.3. Results. Table 3.3 and Table 3.4 shows MeanRecall@10 and Max-MRR for the

following 5 different search scenarios:

97

Table 3.4. Max-MRR of within-category QBE retrievals for the five different
search scenarios. The Ensemble method was used to update the search results
with vocal imitations.

Category Clean Mixed Mixed+Pos Mixed+Neg Mixed+Pos+Neg

Animal 0.77 0.529 0.653 0.563 0.722

Human sound 0.627 0.358 0.43 0.467 0.543

Music 0.74 0.431 0.501 0.508 0.54

Sound of things 0.589 0.357 0.425 0.423 0.458

Source-ambiguous 0.836 0.264 0.317 0.316 0.452

• Clean: Clean-queries are tested to see the best possible retrieval performance given

the testing dataset.

• Mixed: Mixed-queries are tested to see how much a query with overlapping sound

events leads to poor retrieval results given the testing dataset.

• Mixed+Pos: The retrieval results by Mixed-queries are updated using a positive

vocal imitation only.

• Mixed+Neg: The retrieval results by Mixed-queries are updated using a negative

vocal imitation only.

• Mixed+Pos+Neg: The retrieval results by Mixed-queries are updated using both a

positive and a negative vocal imitation.

The performances on Clean-queries and Mixed-queries can be thought of as upper-bound

and lower-bound performances of my search system given the testing set. The results show

that adding a positive and a negative vocal imitation to a mixed query improved both metrics

(Recall@10 and Max-MRR) for all the categories of the testing set. Interestingly, only using

negative vocal imitation also helps to improve the search results. It confirms that a user can

98

Table 3.5. Recall10 comparison between the two methods to update the initial
search result using vocal imitations: Ensemble and Query expansion method
presented in Section 3.2.2.

Recall@10 Max-MRR

Category Ensemble
Query

expansion
Ensemble

Query
expansion

Animal 0.369 0.369 0.722 0.701

Human sound 0.282 0.290 0.543 0.532

Music 0.286 0.288 0.540 0.551

Sound of things 0.189 0.185 0.457 0.449

Source-ambiguous 0.167 0.156 0.452 0.450

improve the retrieval by providing negative imitations when a positive event in a query is

hard to imitate.

I performed a Wilcoxon signed-rank test on the results. The statistical test showed that

the search results updated by a positive and negative vocal imitation are significantly greater

than the initial search results (p < 0.05) for all the categories except for the Source-ambiguous

category with the p value of 0.1. I guess the higher p-value of the Source-ambiguous category

is caused because human’s vocal imitations of source-ambiguous sound events might not be

enough to help the search system distinguish source-ambiguous sounds from another.

I also compared the two update methods, Ensemble and Query expansion presented

in Section 3.2.2 to see which method is more effective in improving QBE search results.

Table 3.5 shows within-category Recall@10 and Max-MRR after an initial search result gets

updated by each method with positive and negative vocal imitations. Even if the Ensemble

method shows better results for most of the categories, the difference is very small. I ran a

Wilcoxon signed-rank test and they did not show a statistically significant difference. I can

conclude that both methods can successfully improve QBE retrieval using vocal imitations.

99

One might prefer Query-expansion because the Ensemble method requires multiple searches

in parallel (each for a single vocal imitation) while the Query-expansion method only requires

a single search regardless of the number of given vocal imitations. However, the Ensemble

method can also be preferred for someone who has a better way of measuring the similarity

between a vocal imitation and a real sound (i.e. better query-by-vocal imitation systems)

and want to use another method separately only for measuring the similarity between real

sounds.

3.5. Conclusion

I presented a new CNN-based feature extractor M-VGGish that takes a variable length

of audio and generate audio embedding for both real sounds and vocal imitations. I per-

formed vocal imitation-based audio search to evaluate the M-VGGish model. The experiment

showed that M-VGGish outperformed other existing methods in measuring the similarity be-

tween vocal imitations and real sounds.

I also presented two ways of using vocal imitations of a positive and a negative sound

event in a query to update QBE audio search results. Positive and negative vocal imitations

provide the system with the information about what sound events of interest should and

should not sound like. Negative vocal imitations are helpful especially when a poor search

result is due to negative sound events overlapped with the positive event in a query. Highly-

ranked items in the search results could be recordings that sound similar to the negative

sound in a query. In this case, negative vocal imitations can help the system to update

search results in a way that the highly-ranked, but irrelevant recordings are pushed to the

lower position in the search result. Therefore, the proposed methods allow users to improve

100

the search result simply by providing the search system with their vocal imitations of the

positive and negative sound events in a query recording.

I performed an experiment of Query-by-example audio retrieval to evaluate if vocal imi-

tations of the positive and negative sound events in a query improve the search performance.

The experiment results showed that the performance gain could be achieved only by either

positive or negative imitation, but using both types of vocal imitations improve the search

performance even more. Therefore, users can update poor search results caused by a query

containing overlapping sound events by imitating what they do or do not want in the query.

This work would solve the cold-start problem that the interactive sound event annotation

presented in Chapter 2 might face when the initially selected region contains multiple sound

events so the system fails to return any relevant sound event during early rounds of the

interactive search.

To perform all the experiments in this chapter, I created a new crowd-sourced vocal

imitation dataset, Vocal Imitation Set. It has more than double the number of imitations

available in prior vocal imitation datasets. While I used vocal imitations as an additional

input modality for a user to improve QBE search results, I also expect that this dataset will

help the research community obtain a better understanding of human vocal imitations and

build systems that can understand imitations as humans do.

My work in this chapter provides strong evidence that a user’s vocal imitation can help a

user to find sound events of interest quickly. One implication of this work is that developers

can build systems that apply this new user interaction to help users find desired sound events

from a large dataset with less effort. However, as presented in Chapter 2, a new interaction

also causes additional interaction overhead. Therefore, as future work, it will be important

101

to design the search interfaces in a way that a user can seamlessly provide the system with

vocal imitations for searches.

I have shown that positive and negative vocal imitations of a query improve the perfor-

mance of audio search when the query does not have an isolated positive sound event. This

is the first work that studied the effectiveness of human vocal imitations in improving QBE

search. Especially, none of the prior works has focused on negative vocal imitations for audio

search. As future works, this new approach also can be applied to an audio classification

task. When no isolated sound event of a certain class is available as training examples, it

might be difficult for a machine learning model to learn proper mapping functions between

the audio signal and its label. Since positive and negative vocal imitations can be thought

of as additional labeled examples, it would be an interesting future work to see how the

user-generated examples can be used a part of training data for audio classification tasks.

102

CHAPTER 4

Sound event detection using point-labeled data

4.1. Introduction

In previous chapters, I have focused on how to quickly collect a set of sound events of

interest from a large amount of unlabeled audio data. The presented solutions can be used

in a situation where the goal of annotation is to directly quantify sound events of interest in

a recording and use the information for direct analysis. In this chapter, I focus on another

situation where sound event annotation needs to be done as a precursor to building a machine

learning model that performs Sound Event Detection (SED).

SED is a task of identifying a class of sound events and estimating the time position (i.e.

start and end) of each occurrence of that class in an audio recording (see Figure 4.1). Auto-

matic SED is an essential task in many areas that require an audio-based understanding of

our environment. Sound is very useful information to understand the environment especially

in a situation where visual information (e.g., video or images) is not available. A microphone

can capture sound events coming from a dark environment or in blind spots where visual

objects are occluded from a camera’s field of view. Applications of SED include detect-

ing source of noise in urban areas [5], identifying bird species singing in nature recordings

[100], sound-based home monitoring [103, 95], office monitoring [34], gunshot detection in

city recordings [104], and detecting anomalous machine sound from a manufacturing system

[35, 52].

103

Car engine
Siren

Dog barking

time

An audio recording

Figure 4.1. Examples of Sound Event Detection (SED). Given an audio record-
ing and a fixed set of sound classes, a SED system automatically identifies the
classes of sound events and estimate temporal locations (i.e. start and end)
of the events within the recording. There could be multiple sound classes
overlapping each other (i.e., polyphonic environment)

The typical approach to building automatic sound recognition systems is to train a ma-

chine learning model with labeled data. Examples include neural networks [81, 38], Gauss-

ian Mixture Models (GMM) [109], decision trees [60], Hidden Markov Model (HMM) [36],

Non-negative Matrix Factorization (NMF) [23] and Support Vector Machines (SVM) [84].

Recent SED systems often use deep neural networks [68, 13, 53] and they are the current

state-of-the-art. A machine learning model learns a mapping function between the audio

signal and its label (e.g., a recording of a dog bark and its text label ‘dog bark’). Once a

model is trained on a labeled training dataset, it can estimate a label of a new audio signal.

For a SED system to be maximally effective at detecting sound events and indicating

their onset/offset times, it needs to be trained on audio data with time-coded labels that

indicate the start and stop times of sound events. This is illustrated in Figure 4.2. Labeling

that provides exact onset and offset times of a sound event is called Strong labeling. Col-

lecting strongly-labeled data by manually annotating each sound’s onset and offset within a

104

Machine learning
model

An audio recording

Figure 4.2. For a machine learning model to learn a proper mapping func-
tion between an audio signal and its label, each of training examples needs
to be well-segmented with correct onset and offset times of an audio event.
Therefore, it requires strong-labels of sound events in a recording.

recording is a very time-consuming task. A human annotator might need to listen to a sound

event multiple times to set correct time boundaries of event labels on a visual interface [49].

The annotation would become more challenging in a polyphonic environment where multiple

sound events can overlap each other.

To overcome the high cost of collecting strong labels, many researchers have presented

models that do not require strongly-labeled audio data for model training. As an alternative

to strong labels, weak labels have obtained much attention for sound event classification and

detection [54, 68, 58, 57, 46]. Weakly labeled data names the sounds within an audio

recording without specifying anything about onset or offset times (e.g. “there is a dog bark

somewhere within this 30-second recording of a park scene”). Collecting weak labels is easier

and faster than collecting strong labels, since the human annotator does not need to indicate

the exact time boundaries of events, which takes a lot of time. To collect weak labels, one

might just need to listen to a sound clip once and record what events are anywhere in the

105

clip [15]. Models trained on weak labels, however, typically do not achieve the performance

of models trained on strongly labeled data. This is because there are intrinsic limitations in

terms of the information the models are trained on.

In this chapter, I present a new type of audio labeling, called point labeling which contains

more information than weak labels, but still takes less human time to produce than strong

labels. I also present a SED model that can be trained on point-labeled training data and

show that its performance is similar to the performance of the strong model.

4.1.1. Contributions

My contributions in this chapter are the following:

(1) I present a new type of sound event labeling, point labeling, which (to the best of

our knowledge) has not been addressed in prior works on audio labeling

(2) I present a new method to train a machine learning model (in this case, a Fully

Convolutional Network) on the point labeled audio data.

(3) I present a strategy to automatically expand point labels so they can cover a greater

portion of a sound event, which should lead to performance improvement on SED

tasks.

(4) I report the experimental results showing that a model trained on point-labeled

audio data significantly outperforms one trained on weak labels and achieves com-

parable results to a model trained on strongly labeled data.

106

Figure 4.3. Examples of different types of audio annotation. Strong labels
contain names of sound events and their time information. Weak labels only
have clip-level presence or absence of events without their timing information.
Point labels contain names of sound events at a single time point per sound
event instance within a recording. The position of each point can vary within
each instance.

4.2. Point Labeling

In this section, I present my new method of labeling sound events (i.e. point labeling)

and compare it with existing labeling methods (i.e., strong and weak labeling). Figure 4.3

shows examples of strong, weak, and point labels.

Strong labels contain names of sound events and their temporal boundaries. To maximize

the SED performance of a model, training audio examples need to be strongly-labeled.

However, collecting strong labels is very time-consuming. Specifically, finding the correct

onset and offset of each event in a polyphonic environment requires a lot of human effort

[18].

107

Weak labels only indicate the presence or absence of sound events within an audio clip,

without their temporal location within a recording. Weak labels are relatively easy to collect.

A human annotator just needs to judge whether or not a target sound event is at all present

in the recording. When modern SED systems are built on a weakly labeled dataset, a

multiple-instance learning (MIL) formulation is typically applied, assuming each class of

sound events is present during the entire clip if the event is present anywhere within the clip

(see Weak in Figure 4.3). This information might be enough for audio tagging tasks where a

trained model is expected to estimate labels for an entire clip, not its temporal information

within the clip. However, the lack of time information on a training set would degrade the

model performance on SED tasks where the model is expected to estimate time information

of events within an audio clip.

My idea to reduce the gap between a strong label and a weak label is point labels. As

shown in Figure 4.3, point labels contain names of sound events at a single time point per

sound event instance. A human annotator can indicate a sound occurred (e.g., by clicking

a mouse button or hitting a key in an annotation interface) anywhere within the area of

the sound event. I believe that this user interaction takes much less time and effort than

that required to find and mark the exact start and stop times for each labeled sound in a

recording. In fact, in the right scenario, point labeling could take as little effort as weak

labeling, since the time/effort difference between clicking at the time one hears a sound

(providing a point label) and waiting until the end of a recording before indicating the

presence of a sound (weak labeling) may be very small, if the labeling task is structured

appropriately. Therefore, point labeling has the potential to be faster than strong labeling

and training a model on point labels should be better than training one on weak labels.

108

In the remaining sections of this chapter, I will present how to build a SED system on

point-labeled audio data and compare the system with other models built on strongly-labeled

and weakly-labeled data.

4.3. Training a SED model on point-labeled data

In this section, I present a method to build a machine learning model on point-labeled

audio data. First, I present a new loss function point-label loss to train neural networks on

point labeled audio data. Then, I present a method to expand point labels so they can over

a greater portion of a sound event within an audio clip.

4.3.1. point-label loss

To build a SED system in this work, I use deep neural networks, as several recent prior

works [68, 13, 53] have done. Neural networks are trained to minimize the loss between

model predictions and ground-truth labels. During training, a model needs to compute losses

between encoded ground-truth labels and the model outputs. In this section, I present how

to compute losses for model training when point labels are available. I call the loss point-label

loss.

A SED model takes an audio clip and outputs class probabilities for each time segment.

The output contains the likelihood of each class being present at each time step. During

training, the training loss is computed based on the difference between the output matrix

and ground-truth labels of the audio clip. Therefore, to compute the point-label loss, Lpoint,

point labels of each recording need to be encoded in the form of the output of a typical SED

model so they can be directly compared.

109

Dog
Cat Car engine

Dog

Cat

Car

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

Encoded
point label

Encoded
strong label

: False-negative labels

Dog

Cat
Car

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Recording
(strong label)

Dog Cat Car engine

Recording
(point label)

𝑌" ∈ {0, 1})×+

𝑌, ∈ {0,1})×+

Figure 4.4. Examples of how to encode point labels to compute point-label
loss. In this example, three sound events are present at different time location
within an audio clip, which result in three point labels at three different time
positions. It also illustrates false-negative labels generated by the encoded
point labels.

An output of a SED model is denoted as Ŷ ∈ RC×T where C is the number of classes

and T is the number of time segments. Then point labels are encoded in a way that the

encoded label has the same size as the model output. Let Y p ∈ {0, 1}C×T be the encoded

point labels of a recording. If a point label of the event c is located at the t-th time-segment,

then 1 is assigned to Y p
c,t, otherwise, 0 is assigned to it. Figure 4.4 shows an example of

the point label encoding and compares the encoded point labels with strong labels when the

110

number of sound classes C is 3. The time resolution of encoded point labels depends on

configurations of a SED model. Given the model I use for the experiment (see Section 4.4),

each time segment of encoded point labels covers 1/3 seconds of an input recording.

The encoded point labels Y p only contain information of the presence of an event during

a short time period, not the absence of an event, which means that some of 0s in Y p might

be false-negative labels. Figure 4.4 also shows an example of false-negative information of

encoded point labels. Therefore, the losses between point labels Y p and a model output Ŷ

(i.e., an estimate of the label matrix) might mislead the model training. My solution to

this problem is to only compute losses at true-positive labels. To do so, I first filter out

any prediction probabilities in Ŷ that cannot contribute to correct loss computation. The

filtered version of model outputs Ŷ f ∈ RC×T is computed as follows

(4.1) Ŷ f = Ŷ � Y p,

which is element-wise multiplication between the model output Ŷ and point labels Y p. Since

point labels Y p contains 0 or 1, element-wise multiplying the model output Ŷ by the ground-

truth point labels Y p results in a matrix Ŷ f that has non-zero elements only at points in time

where there is a positive point label. The result is that the loss function is only presented

with differences between model output and the ground truth at the point labels.

Once Ŷ f is computed, point-label loss Lpoint can be defined as binary-cross entropy

between Ŷ f and Y p. The binary-cross entropy loss is computed as:

111

(4.2) Lpoint = −
T∑
i=1

C∑
c=1

Ŷ f
i,clogY

p
i,c + (1− Ŷ f

i,c)log(1− Y p
i,c),

where Ŷ f
i,c is a model output for event class c at ith time step and Y p

i,c is a point label of

event class c at ith time step within an audio clip.

Since point-loss Lpoint only computes loss on the time-segments where there is a point

label that covers a very short time period within an audio clip, most of the audio in a training

example is not trained on. Therefore, rather than simply ignore that audio, I combine a weak

loss Lweak function and point-label loss Lpoint in training. Since the weak loss only cares about

the presence or absence of an event within a clip, point-label loss will provide the final loss

function with the time information of each event within the clip. The weak loss Lweak is

binary cross-entropy loss between weak labels, y ∈ {0, 1}C and clip-level predictions, ŷ ∈ RC ,

where C is the number of classes. The Lweak is computed as

(4.3) Lweak = −
C∑
c=1

ŷclogyc + (1− ŷc)log(1− yc),

where ŷc is the likelihood of event class c and yc is ground truth label for the clip (i.e. weak

label). Weak labels are obtained by treating point labels as clip-level ground truth labels.

The clip-level predictions from the model are obtained by applying time frame-wise max

pooling operation on the model’s output Ŷ (i.e., segment-level predictions).

Finally, my SED model is trained by minimizing the following loss:

(4.4) Loss = (1− α)Lweak + αLpoint,

112

A SED
model

Input
audio

Class probabilities
for each time step Max pooling

over time (T)
𝑦"

Clip-level
prediction

⨀

𝐿%&'() = 𝐵𝐶𝐸(𝑌%, 𝑌01)

𝑦

Weak label

𝐿3456
= 𝐵𝐶𝐸(𝑦", 𝑦)

𝐿𝑜𝑠𝑠 = 	 1 − α 𝐿3456 + α𝐿%&'()

𝑌01 	= 	𝑌0⨀𝑌%

Point label

𝑦" ∈ ℝ? 𝑦 ∈ {0, 1}?

𝑌0 ∈ ℝ?×E

𝑌% ∈ {0, 1}?×E

Figure 4.5. Summary of computing losses on point-labeled audio data during
model training. It is trained to minimize the combination of weak loss and
point-label loss. *BCE refers to Binary-Cross Entropy loss

where α is a hyper-parameter to determine the contribution of each loss to the final loss.

The α can be determined through experiments (see Section 4.4.4). Figure 4.5 shows the

summary of how the final loss is computed given an audio clip.

4.3.2. Expanding point labels

While point labels contain time information of sound events that weak labels do not have,

there is still a gap between strong labels and point labels. A single point label encoded for a

SED model only covers a single time-step. For example, given the model architecture used in

113

the experiment (Section 4.4), one time-step lasts 1/3 of a second. However, many real-world

sound events are longer than 1/3 of a second. In this section, I present a method to expand

point labels so they can cover a greater portion of a sound event.

The idea is to expand point labels to label more adjacent time frames, which can improve

the advantage point labels have over weak labels. However, if I expand a point label too

far, I may label adjacent segments where the labeled sound does not occur, creating false-

positive “ground truth” labels that would harm learning. Therefore, it is necessary to have a

systematic way of determining when to stop the expansion. The idea is to measure similarities

between a point labeled segment and its neighbor segments, and copy the point label only

to similar neighbor segments.

To measure similarities between segments, I first build a SED model on a training set

with only weak labels (i.e., weak model). Note that this training set is the one that the

point model is trained on later. The weak model is trained by minimizing only weak loss

(Lweak in Figure 4.5). Then I apply this weak model to label each audio clip in the training

set at the segment level (1/3 of a second) to obtain segment-level class probabilities for each

training example (i.e., Ŷ). The class probabilities for each segment can be thought of as

feature embedding where the similarities between segments can be measured. Figure 4.6

shows an example of the proposed point label expanding method.

For each point-labeled segment at time t, I measure cosine similarity between that seg-

ment’s class probabilities (St) and the class probabilities of the segments immediately before

(St−1) and after it (St+1). If a neighbor’s similarity is above a user-adjustable threshold

(0.5 in my experiments), the point label is copied to that neighbor. Then I again compare

new neighbor segments (St−2 or St+2) to the original point-labeled segment (St) to decide

whether the point label can be copied to the new segments. The expansion is applied to

114

0 ∙∙∙0 00∙∙∙ 0

label
C1

1
1

1
Encoding

C2

C3

C1

C2

C3

0.3

0.2
0.8

0.2

0.6
0.1

C1

C2

C3

Segment-level
prediction

0.3

0.3
0.7

0.2

0.1
0.6

Cosine similarity

1
1

1

C1

C2

C3

Expanded
encoding 11

Copy to similar segments

0.7

0.3
0.1

0 ∙∙∙
0 ∙∙∙0

0
0

0
0

0 ∙∙∙0 00∙∙∙ 0
∙∙∙ 0
∙∙∙ 0

0 ∙∙∙0 00∙∙∙ 0

Figure 4.6. An example of expanding point labels to similar neighbor segments.

every new neighbor segment that falls above the similarity threshold, until a segment with

similarity less than a certain threshold is found. Once point-labels are expanded, a model

can be trained in the same way that how a model is trained on original point labels

This similar segment picking strategy is very useful since the positions of point labels

can vary with different human annotators. When evaluating the proposed system in the

experiment (Section 4.4), I set the point labels at random locations within an event to

reflect the real-world scenario. I will report the experiment results showing that a SED

model trained on the expanded version of point labels outperforms one trained on original

115

point labels. It confirms that the point label update method successfully expands point

labels in a way that limits false-positive labels.

4.4. Experiments

I now present an experiment designed to shed light on the efficacy of point labels for

providing a training signal to a deep model for sound event detection. If point labels prove

more effective than weak labels, this indicates such labels have the potential to be an effective

alternative labeling method that combines the advantage of strong labels (accurate labeling

at fine time granularity) with weak labels (easy to create).

In the experiments, I train models on point-labeled data, weakly-labeled data and strongly-

labeled data and compare the SED performances of them. I will call each of the models point

model, weak model, strong model in this section.

The goal of the experiments is to answer the following questions:

• Do point models output performs weak models on sound event detection?

• Are point models comparable to strong models on sound event detection?

• Does the point-label expansion method improve the SED performance of point mod-

els trained on single point labels?

4.4.1. Model architecture

Table 4.1 shows the architecture of the model used in the experiments. It is a fully convo-

lutional network (CNN) consisting of 8 convolutional layers. CNN takes as an input image.

Therefore, to train a CNN model, an audio clip needs to be transformed into an image. In

my experiment, an audio clip at a sampling rate of 16kHz is first transformed into a mel-

spectrogram (64 Mel bins, a window size of 25 ms and a hop size of 10 ms). It represents

116

Table 4.1. Model architecture. *MP: 2D-Max Pooling (kernal size: 2 × 2,
stride: 2), *N: the number of classes in the training dataset (N=10 in our
experiment). The output shape column shows the size of tensor from each
layer, given a 10-second recording as input.

Layers Components Output shape

Input Mel-spectrogram 998×64
Layer-1 Conv (3×3, 64) → Relu → MP 499×32, 64

Layer-2 Conv (3×3, 128) → Relu → MP 249×16, 128

Layer-3 Conv (3×3, 256) → Relu 249×16, 256

Layer-4 Conv (3×3, 256) → Relu → MP 124×8, 256

Layer-5 Conv (3×3, 512) → Relu 124×8, 512

Layer-6 Conv (3×3, 512) → Relu → MP 62×4, 512

Layer-7 Conv (2×2, 1024) → Relu → MP 30×1, 1024

Layer-8 Conv (1×1, C) → Sigmoid 30×1, C

how energies of different frequencies of a sound change over time and allow CNNs to learn

spectral patterns of different sound events. The model can take a variable length of audio.

The first 6 convolutional layers are the same as VGGish model [38] which has proven to

be very effective in recent prior works [40, 51, 46, 45]. Then the last two layers are newly

added to obtain segment-level predictions of an audio clip. I use the same model architecture

to learn from weak, strong, and point labels with different loss functions because my focus

is not evaluating model architectures, but evaluating the efficacy of point labels compared

to strong and weak labels.

In the table, Convolution operations for each layer are denoted as Conv (the size of

filters, the number of filters). The number of filters on the last layer depends on the number

of classes in the training data. Strides of all the convolutional layers are set to 1. Zero-

padding with a size of 1 is applied to layer-1 to 6. All the convolutional layers except for

117

the last one are followed by Rectified Linear Unit (ReLU) activation. The last layer uses

Sigmoid activation to compute the class-wise probability of sound events.

Given a recording, the network outputs a matrix Ŷ ∈ RC×T where C is the number of

classes and T is the number of time segments, which represents class probabilities for each

time segment. T depends on the input audio length. Table 4.1 also shows an example of

output shapes from each layer when the network takes a 10-second recording as an example.

The network outputs Ŷ (C × 30 matrix) where each segment represents class probabilities

for 1/3 seconds of audio.

4.4.2. Dataset and point-label generation

4.4.2.1. Dataset. I evaluate models on URBAN-SED dataset (Version 2.0) 1 which con-

tains 10,000 soundscapes generated using the Scaper soundscape synthesis library [94]. I

chose the dataset because it contains strong labels of all the soundscapes, which enables me

to generate point labels as well as weak labels. On top of that, this dataset has been widely

used to evaluate recent SED systems [68, 80, 79, 67].

Each file in the dataset is 10 seconds long (about 28 hours in total) and contains between

1 to 9 sound events from 10 classes in the UrbanSound8K dataset [93]. They are polyphonic

soundscapes, which means that sound events within an audio clip can be overlapped each

other. The total number of annotated sound events in the dataset is close to 50,000. The

10 sound classes in the dataset are the following: air conditioner, car horn, children playing,

dog bark, drilling, engine idling, gunshot, jackhammer, siren, and street music. The dataset

is pre-divided into train, validation, and test sets containing 6000, 2000, and 2000 files

respectively.

1http://urbansed.weebly.com/

118

4.4.2.2. Point-label generation. To train a model on point-labeled data, I generated

point labels for audio clips in training data. When generating point labels, it is important to

reflect the real annotation scenario where different human annotators might choose different

time locations for a point label. Therefore, I randomly set the time position of point labels

within a sound event. No matter where a point is located within an event, I expect that a

point label can be properly expanded by the point label expansion technique presented in

Section 4.3.2.

In this work, I assume that only a single point label per sound event is collected, although

I believe that multiple point labels per event should not hurt the performance and could lead

to further performance improvement. In a real-world scenario, depending on the labeling

budget, a human annotator might be able to provide more than one point for a single sound

event.

4.4.3. Performance metric

To measure the performance of the sound event detection (SED) models, I compute a

segment-based F1 score with a segment granularity of 1 second, which is an official eval-

uation method in the DCASE challenge [73], an annual evaluation of SED models. Figure

4.7 shows an example of computing F1 score on estimations of labels for a 5-second audio

clip with 3 sound classes. The segment-based F1 score is computed based on the numbers

of True-Positive (TP), False-Positive (FP), and False-Negative (FN) values of every class at

every second over the testing set. These numbers are first used to compute Precision (P)

and Recall (R). Then F1 score is computed as follows

119

0 5

c1

c2

c3

0 5

c1

c2

c3

0 5

c1

c2

c3

TP TP

TPTPTP

FN

FN

TN

FN TN TN TN

TN FP

FP

TP: 5, FN: 3, FP: 2

Precision = 0.71, Recall = 0.63

F-score = 0.67

Ground-truth

Model estimation

Class-wise
F-score

0.75

0

0.86

F-score= 0.54

Micro-averaging

Macro-averaging

*TP: true-positive
TN: true-negative
FP: false-positive

Figure 4.7. An example of computing segment-based F1 scores with micro and
macro averaging on a 5-second audio clip.

(4.5) P =
TP

TP + FP
, R =

TP

TP + FN
, F =

2 · P ·R
P +R

F1 score could vary depending on the choice of averaging. I report two F1 scores with

different averaging methods: micro and macro averaging. In micro averaging, F1 score is

computed for each audio clip and they are averaged over the entire dataset. Macro F1 score

is a class-wise averaging metric. So F1 score for each sound class is computed over the entire

dataset and they are averaged over classes.

120

4.4.4. Settings for training and testing

Each audio file was resampled to 16kHz mono and represented by a log-scale Mel-spectrogram

with 64 Mel bins, a window size of 25 ms and hop size of 10 ms. All models were trained

on mini-batches of 32 examples using the Adam optimizer with a learning rate of 0.0001.

The training stopped if the model performance on the validation set did not improve for 20

epochs.

I also applied transfer learning because 6,000 training examples are relatively small

dataset given the model architecture. When training the models, I initialized the networks

with the set of weights from a VGGish pre-trained model [38] that has been trained on 3,000

sound classes of 8 million YouTube videos because the VGGish model has been successfully

used in recent prior works on transfer learning for sound classification [40, 51, 46, 45].

Layers 1 to 6 (see Table 4.1) were initialized with the weights from the VGGish model.

The rest of the layers were randomly initialized. Since lower layers of a CNN model capture

very basic patterns of audio, pre-trained weights of lower convolutional layers can be used as

fixed feature extractors and therefore were not updated during training on the specific dataset

used for these experiments. It also helps to reduce the number of trainable parameters, which

makes it possible to effectively train models on the limited number of training examples.

Through a preliminary experiment, I found fixing the first three layers to be the most

effective. The rest of the layers were fine-tuned on the training set. To obtain labels from

the network output, I applied the likelihood threshold 0.5 to class probabilities to determine

the presences or absences of an event. Figure 4.8 shows an example of how a trained network

estimates event activities over time in a test audio example.

121

Model

Input
audio

0.5 0.7 0.5 0.2 ….
0.8 0.2 0.3 0.5 …

Thresholding
(<0.5)

1 1 1 0 ….
1 0 0 1 …

Dog
Car Engine

Spectrogram Class probabilities
for each time step

Figure 4.8. An example of how a trained model performs sound event detection
given a test audio clip

0 0.2 0.4 0.6 0.8 1
Alpha

0.2

0.3

0.4

0.5

0.6

0.7

F-
sc

or
e

Figure 4.9. SED performance of point models on the validation set with dif-
ferent alpha values.

When point models are trained, the contributions of weak loss and point loss to the final

loss function need to be determined (α in equation 4.4). When α is set to 0, only weak

losses are considered during training. When α is set to 1, only point losses are computed. I

122

A SED
model

Input
audio 𝑌"

Class probabilities
for each time step Max pooling

over time (T)
𝑦$

Clip-level
prediction

𝑦

Weak label

𝐿&'()
= 𝐵𝐶𝐸(𝑦$, 𝑦)

𝑌/

Strong label

A SED
model

Input
audio 𝑌"

𝐿/01234
= 𝐵𝐶𝐸(𝑌" ,𝑌/)

(b) Strong model

(a) Weak model

Class probabilities
for each time step

Figure 4.10. Two different ways of computing losses for weak model and strong
models. Weak losses Lweak is computed by the difference between clip-level pre-
dictions and weak labels. Strong losses Lstrong are computed between segment-
level predictions and strong labels.

picked the best α value based on the model performance on the validation set. Figure 4.9

shows F-score of point models on the validation set with different α values. When the loss

function is a combination of weak loss and point loss with α = 0.8, the model obtained the

highest F-score. I set α = 0.8 when testing point models on the testing set in the remaining

sections.

In addition to the point model, I also trained two other models, a weak model and a

strong model to compare the three of them. Figure 4.10 shows how weak losses and strong

losses are computed. Weak models are trained by minimizing weak loss Lweak which can

be thought of as the final loss for a point model with α = 0. For strong models, I encode

the strong label matrix Y s in the same way as point label encoding, but with the exact

123

Table 4.2. F1 score, precision, and recall (higher is better for all three) for
each model. Weak and Strong models are trained by minimizing weak loss
and strong loss respectively. All point models are trained by minimizing the
loss function (Equation 4.4) which is the combination of weak loss and point
loss with α of 0.8. *Micro F1 scores are not available in [68].

Macro Micro

Model F1 Precision Recall F1 Precision Recall

Weak 0.577 0.803 0.458 0.581 0.795 0.457

Strong 0.637 0.681 0.607 0.638 0.675 0.605

Point single 0.604 0.768 0.513 0.610 0.763 0.509

Point expanded 0.636 0.701 0.596 0.636 0.684 0.594

Strong (McFee et al.[68]) 0.551 0.693 0.458 n/a n/a n/a

time boundary information of events and compute loss between Ŷ and Y s. I use binary

cross-entropy to compute the loss for weak, strong, and point labels.

4.4.5. Results

I compared two variants of point models. Point-single model uses only a single point label

at a random time position within a sound event. Point-expanded model uses the updated

point labels expanded by the proposed methods in Section 4.3.2. Both models were trained

by minimizing the loss function with α of 0.8 (see equation 4.4) that showed the best per-

formance on the validation set, as reported in Figure 4.9. I also built a Weak model as a

baseline and Strong model as the best possible model.

Table 4.2 shows F1 scores with precision and recall. My two point models outperform

the weak model regardless of averaging methods (i.e., macro and micro), which shows the

point labels help models localize sound events more accurately. Compared to the two point

models, the proposed point label expansion improve the performance even further. The

124

air_conditioner

car_horn

children_playing

dog_bark

drilling

engine_idling

gun_shot

jackham
m

er

siren

street_m
usic

Classes

0.3

0.4

0.5

0.6

0.7

0.8

F-
sc

or
e

Weak
Point-expanded

Figure 4.11. Class-wise F1 scores of weak and point-expanded models.

point expanded model achieved F1 = 0.636 which is nearly identical to the strong model’s

score (F1 = 0.637 for macro and 0.636 for micro). This performance gain was achieved even

though I randomly set the positions of point labels, which proves that the point models are

robust to the position of point labeling which might vary in real annotation scenario. To

provide the current state of the art as context, I also report results on the same data from a

strong recent model by McFee et al. [68]. All models showed a better F1 score than McFee

et al. I believe this is due to more capable network architecture and transfer learning from

a model pre-trained on a much larger dataset. Figure 4.11 compares class-wise F1 scores of

weak and point-expanded models. It shows that the point-expanded model outperforms the

weak model for most classes of sound events.

125

air_conditioner
car_horn

children_playing
dog_bark

drilling
engine_idling

gun_shot
jackhammer

siren
street_music

Gr
ou

nd
 tr

ut
h

air_conditioner
car_horn

children_playing
dog_bark

drilling
engine_idling

gun_shot
jackhammer

siren
street_music

W
ea

k

0 1 2 3 4 5 6 7 8 9
Time (second)

air_conditioner
car_horn

children_playing
dog_bark

drilling
engine_idling

gun_shot
jackhammer

siren
street_music

Po
in

t-e
xp

an
de

d

Figure 4.12. An example of SED performed by weak model and Point-expanded
model for a 10-second audio clip in the testing set. In each figure, yellow bars
represents event activities of each class over time. The top figure shows the
ground-truth labels. The middle and bottom figures shows estimations from
weak and point models.

Figure 4.12 visualizes an example of the predictions performed by the weak and point-

expanded model given a 10-second recording from the testing set. The recording contains 4

different sound events. The weak model failed to detect street music, but the point model

successfully detected it. The figure also shows that the point model also made more accurate

predictions of temporal boundaries of the identified events. While gun shot and dog bark

126

0 20 40 60 80 100
The proportion of point-labeled training data (%)

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700
F-

sc
or

e

Figure 4.13. SED performance of point models trained on different amount
of point-labeled data. The total number of training examples is 6,000. The
proportion of point-labeled training data increases by 20% (1, 200 examples)
from 0 to 100%.

sounds were identified by both models, the point model covers greater portions of their true

labels.

All experiments performed to evaluate point models so far assume that point labels are

available for all training examples. However, one might already have access to weakly labeled

data and just want to add point labels to a subset of exiting training data to improve the

model performance. My point model can be trained even when point labels are available

only for some amount of training data. This can be done by dynamically setting α = 0 in

the proposed loss function (equation 4.4) for training examples without point labels during

training.

Figure 4.13 shows SED performance of point models with different amounts of point-

labeled training data. Staring with only weak labels (0% of point labeled data), I increased

127

the proportion of point-labeled data by 20% which is equivalent to 1,200 examples (The

total number of training examples is 6,000). For example, the proportion 40% means that

40% of training examples have point labels and 60% of them only have weak labels, which

is equivalent to 2,400 point-labeled and 3,600 weakly labeled training examples.

As shown in the figure, the performance increases as the proportion of point-labeled data

in the training set increases. Interestingly, the largest performance gain was obtained even

by adding point labels to 20% of training examples. It confirms that even a small amount

of point labeled data also helps to improve SED performance.

4.5. Conclusion

I presented a new type of audio labeling, called point labeling which creates more infor-

mation than weak labels, but still faster to collect than strong labels. While strong labeling

requires finding accurate time-boundaries of a sound event, point labels only contain names

of sound events at a single time point per sound event instance in a recording. I also presented

a new method to train neural networks on point-labeled data for sound event detection. I

performed experiments to evaluate the efficacy of point labels for building a sound event de-

tection system using the proposed training method. The results showed that models trained

on point-labeled data outperformed one trained on weakly labeled data.

To improve SED performance of point models even further, I presented a strategy to

automatically expand point labels so they can cover a greater portion of a sound event.

The experiments showed that a model trained with the expanded version of point labels

outperformed one built with original point labels. Moreover, it achieved comparable results

to a model built on strongly labeled data.

128

I believe that this chapter of my dissertation showed strong evidence that high-performing

SED systems can be built with much less human labeling costs. I expect this work will open

new opportunities to researchers who have been working on sound classification and detection

with weak supervision.

Point labeling is a new audio annotation method that has not been addressed in prior

works on audio labeling. In this work, I synthetically generated the point labels. Therefore,

it might be interesting future works to design a new audio annotation tool for point labeling

and let users to collect point labels for real audio data. Moreover, it should be worth it

evaluating my method on real soundscapes containing a larger number of sound classes.

129

CHAPTER 5

Conclusion

My research goal is to reduce the human effort required for sound event detection and

annotation. A typical way for a human to annotate a sound event of interest in unlabeled

audio recordings is simply to listen to the audio until one hears it and then label it with the

onset and offset of the event, which makes sound event annotation labor-intensive. To reduce

such effort, in this dissertation I presented methods to speed up the sound event annotation

process.

My specific goals can be divided into two, in terms of what the annotated data is used for.

One might want to label audio to quantify sound events of interest in unlabeled recordings

for a direct analysis. In this case, my goal is to build a system that helps a user to find sound

events of interest and annotate them quickly. Alternatively, one might need to annotate audio

as a precursor to training a machine learning model for automatic sound recognition. My

research goal for this situation is to help human annotators spend less time labeling training

data, but still build a high-performance machine learning model with less annotation effort.

To achieve these goals, in Chapter 2, I presented a new human-in-the-loop sound search

method to speed up human annotation of a long audio recording. I built the first general-

purpose sound labeling interface, I-SED, where an interactive machine learning approach is

applied to sound event annotation. Starting with a user-selected sound example, the system

directs the user’s attention to the most promising regions of audio for labeling. The user la-

bels these regions and gives the system feedback by labeling and adjusting region boundaries.

130

The system learns from this feedback and updates future recommendations for high-interest

regions. This interactive process helps a user quickly label target sound events in a long au-

dio file. I performed a human-subject study to evaluate its effectiveness. The result showed

that the proposed system lets users find sparsely-distributed target sounds roughly twice as

fast as manually labeling the target sounds. The survey response and free-form comments

showed that most participants were more satisfied with the interactive annotator than the

manual annotator. I-SED pairs a simple ML model with a human, allowing one

to label much more data than would otherwise not be possible, allowing us to

bootstrap data-hungry machine learning models with less effort and pointing the

way for other mixed-initiative systems that combine the strengths of humans and

those of algorithmic approaches.

In Chapter 3, I addressed the issue that might lead to poor initial query-by-example

(QBE) search results when using a QBE system like I-SED, which was presented in Chapter

2. QBE search could fail if a query recording contains multiple overlapping sound events

and only one of them is a positive example. To solve the issue, I presented a new way

of improving QBE search results using user’s vocal imitations which would help a user

to collect sound events of interest quickly. A user can simply provide vocal imitations

to illustrate what they do (positive imitation) or do not want (negative imitation) in a

query. No prior works on audio search had used negative vocal imitations. To evaluate the

effectiveness of vocal imitations on QBE audio search, I also created Vocal Imitation Set, the

largest crowd-sourced vocal imitation dataset. I reported experimental results showing that

not only positive imitation, but also a negative imitation of a query helps a search system

improve the retrieval result. This work is the first study to show the effectiveness

of negative query examples for audio search. This points the way for future

131

systems to incorporate negative information (what the user does not want) into

multimedia search, in general.

Finally, in Chapter 4, I presented a new type of audio labeling, called point labeling, which

makes it easier for human annotators to provide ground truth labels to train a machine

learning sound event detection system. Point labels provide more information than weak

labels, but are still faster to collect than strong labels. While strong labeling requires the

human to notate accurate time-boundaries for every sound event, point labels only require

the human to label each sound event at a single time point, anywhere within the event.

The goal of my work in Chapter 4 is to make it possible to build a high-performance sound

event detection model on point-labeled data, since it requires much less effort to collect

than strongly labeled data. I presented a new method to train neural networks on point-

labeled data for sound event detection. I performed experiments to evaluate the efficacy of

point labels for building a sound event detection system using the proposed training method.

The results showed that models trained on point-labeled data outperformed one trained on

weakly labeled data. To improve sound event detection performance of point models even

further, I also presented a strategy to automatically expand point labels so they can cover

a greater portion of a sound event. The experiments showed that a model trained with the

expanded version of point labels outperformed one built with original point labels. Moreover,

it achieved comparable results to a model built on strongly labeled data. Moving forward,

point labeling, when combined with mixed-initiative labeling (as embodied in I-

SED), promises to be transformative in reducing the difficulty of human labeling

of audio events.

132

5.1. Limitations and future work

While the human-in-the-loop audio annotation system, I-SED presented in Chapter 2

helps a user to annotate a long audio recording quickly, the interactive approaches cause

some amount of interaction overhead due to the human-machine collaboration, compared

to a fully automated system or manual labeling. I addressed interaction overheads of my

interface that I found from the user study in Chapter 2. It would be an interesting future

work to investigate more types of interaction overhead that can be caused by human-in-

the-loop systems. Then, the audio annotation interface can be re-designed to reduce the

interaction overhead, allowing an even greater speedup of the annotation process.

A machine learning model in I-SED keeps being updated by user feedback every round

of the interactive annotation. However, the only way for a user to know the search ability

of the model in I-SED is to listen to audio segments suggested by the machine for each

round. It is hard for a user to understand the behavior of the model, which would limit

the user’s interaction with the system. Recently, an explainable machine learning model has

obtained much attention from research communities [86, 65]. They have presented methods

to have a machine learning model make explainable predictions and incorporate them to

model training. I believe that such techniques can be applied to I-SED, allowing a user

to better understand model suggestions every round of the human-in-the-loop and provide

more detailed feedback to the system.

Another limitation of the current version of I-SED is that it might not be a useful tool

if one’s goal is to achieve 100% recall without listening to all the audio. To help users find

all the target sound events in a recording quickly, the system should give the users some

cues which help them to decide when to stop listening to the remaining audio. Therefore, a

133

possible future version of I-SED might visualize such information so that a user can monitor

the status of the model and decide when to stop the annotation process.

I-SED can also be updated to support other types of labeling such as point labeling

presented in Chapter 4. The current version of I-SED presented in Chapter 2 was designed

to help a user to collect strongly-labeled sound events quickly. Therefore, I-SED assumes

that user’s positive feedback (i.e., audio segments with positive labels) is strongly labeled

positive examples. However, one might want to use the interface to speed up other types of

labeling such as point labeling for the purpose of training a SED system. I have shown that

a SED system built on point-labeled data is comparable to one trained on strongly labeled

data in Chapter 4. Therefore, a possible future direction of my research is to build the next

version of I-SED where user’s point labeled feedback (e.g., point-labeled positive examples)

can be appropriately processed to speed up the labeling task.

The point-label expansion technique presented in Chapter 4 also has a limitation. If a

sound event dynamically changes over time, its point label might fail to be expanded to

its adjacent segments. This is because the expansion is performed based on the similarity

between segments. Moreover, the threshold to determine the expansion is set empirically in

the experiment. Therefore, research on systemic ways of setting the threshold or a new way

of determining the expansion would be an important future work.

Another limitation of my work is that my experiments were performed on synthetically

generated soundscapes with a limited number of sound classes. As future works, it should

be worth it evaluating the proposed systems on real soundscapes containing a larger number

of sound classes.

I hope that my work in this dissertation will be a valuable resource for researchers and

practitioners who are looking for new annotation methods under a limited budget. I expect

134

my work to facilitate their audio data collection and solve data scarcity which is one of the

major bottlenecks for deep learning models. This will eventually increase the range of sound-

objects that could be automatically identified by AI systems. Moreover, I also believe that

my works will encourage researchers to release a lot of public audio datasets with various

types of labels. This will open a lot of new audio research opportunities.

Sound is one of the most important mediums to understand the environment around us.

In the future, I expect that AI systems, like humans, can perceive sound-objects, extract

meaningful information from them, and make a proper decision. I look forward to exploring

new possibilities that were not addressed in this work to improve how people label audio as

well as how AI systems understand sound scenes.

135

References

[1] Amershi, S., Fogarty, J., Kapoor, A., and Tan, D. Examining multiple po-
tential models in end-user interactive concept learning. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (2010), ACM, pp. 1357–1360.

[2] Amershi, S., Lee, B., Kapoor, A., Mahajan, R., and Christian, B. Cuet:
Human-guided fast and accurate network alarm triage. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (2011), CHI ’11, ACM, pp. 157–
166.

[3] Arandjelovic, R., and Zisserman, A. Look, listen and learn. In Proceedings of
the IEEE International Conference on Computer Vision (2017), pp. 609–617.

[4] Aytar, Y., Vondrick, C., and Torralba, A. Soundnet: Learning sound repre-
sentations from unlabeled video. In Advances in Neural Information Processing Sys-
tems (2016), pp. 892–900.

[5] Bello, J. P., Silva, C., Nov, O., Dubois, R. L., Arora, A., Salamon, J.,
Mydlarz, C., and Doraiswamy, H. Sonyc: A system for monitoring, analyzing,
and mitigating urban noise pollution. Commun. ACM 62, 2 (Jan. 2019), 68–77.

[6] Blancas, D. S., and Janer, J. Sound retrieval from voice imitation queries in
collaborative databases. In AES 53rd Conference on Semantic Audio (London, UK,
27/01/2014 2014), Audio Engineering Society, Audio Engineering Society.

[7] Boersma, P., and Weenink, D. Praat: doing phonetics by computer (version
6.0.37), 2018.

[8] Bogaards, N., Röbel, A., and Rodet, X. Sound analysis and processing with
audiosculpt 2. In International Computer Music Conference (ICMC) (2004), pp. 1–1.

[9] Bogaards, N., Yeh, C., and Burred, J. J. Introducing asannotation: a tool for
sound analysis and annotation. In ICMC (2008), pp. 1–1.

136

[10] Boogaart, C., and Lienhart, R. Audio brush: a tool for computer-assisted smart
audio editing. In Proceedings of the 1st ACM workshop on Audio and music computing
multimedia (2006), ACM, pp. 115–124.

[11] Bryan, N. J., Mysore, G. J., and Wang, G. Isse: an interactive source separation
editor. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (2014), ACM, pp. 257–266.

[12] Cai, C. J., Reif, E., Hegde, N., Hipp, J., Kim, B., Smilkov, D., Wattenberg,
M., Viegas, F., Corrado, G. S., Stumpe, M. C., et al. Human-centered tools
for coping with imperfect algorithms during medical decision-making. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (2019), ACM,
p. 4.

[13] Cakır, E., Parascandolo, G., Heittola, T., Huttunen, H., and Virtanen,
T. Convolutional recurrent neural networks for polyphonic sound event detection.
IEEE/ACM Transactions on Audio, Speech, and Language Processing 25, 6 (2017),
1291–1303.

[14] Cannam, C., Landone, C., Sandler, M. B., and Bello, J. P. The sonic
visualiser: a visualisation platform for semantic descriptors from musical signals. In
ISMIR (2006), pp. 324–327.

[15] Cartwright, M., Dove, G., Méndez, A. E. M., and Bello, J. P. Crowd-
sourcing multi-label audio annotation tasks with citizen scientists. In Proceedings of
the ACM on Human-Computer Interaction (2019).

[16] Cartwright, M., and Pardo, B. Synthassist: an audio synthesizer programmed
with vocal imitation. In Proceedings of the 22nd ACM international conference on
Multimedia (2014), ACM, pp. 741–742.

[17] Cartwright, M., and Pardo, B. Vocalsketch: Vocally imitating audio concepts.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (2015), ACM, pp. 43–46.

[18] Cartwright, M., Seals, A., Salamon, J., Williams, A., Mikloska, S., Mac-
Connell, D., Law, E., Bello, J. P., and Nov, O. Seeing sound: Investigating
the effects of visualizations and complexity on crowdsourced audio annotations. Pro-
ceedings of the ACM on Human-Computer Interaction 1, CSCW (2017), 29.

[19] Chen, S., Chen, J., Jin, Q., and Hauptmann, A. Class-aware self-attention for
audio event recognition. In Proceedings of the 2018 ACM on International Conference
on Multimedia Retrieval (New York, NY, USA, 2018), ICMR ’18, ACM, pp. 28–36.

137

[20] Chou, S.-Y., Jang, J.-S. R., and Yang, Y.-H. Learning to recognize transient
sound events using attentional supervision. In IJCAI (2018), pp. 3336–3342.

[21] Chung, Y.-A., Wu, C.-C., Shen, C.-H., Lee, H.-Y., and Lee, L.-S. Audio
word2vec: Unsupervised learning of audio segment representations using sequence-to-
sequence autoencoder. arXiv preprint arXiv:1603.00982 (2016).

[22] Cramer, J., Wu, H.-H., Salamon, J., and Bello, J. P. Look, listen, and
learn more: Design choices for deep audio embeddings. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019),
IEEE, pp. 3852–3856.

[23] Dessein, A., Cont, A., and Lemaitre, G. Real-time detection of overlapping
sound events with non-negative matrix factorization. In Matrix Information Geometry.
Springer, 2013, pp. 341–371.

[24] Durrieu, J.-L., and Thiran, J.-P. Musical audio source separation based on user-
selected f0 track. In International Conference on Latent Variable Analysis and Signal
Separation (2012), Springer, pp. 438–445.

[25] Fiebrink, R. Machine learning as meta-instrument: Human-machine partnerships
shaping expressive instrumental creation. In Musical Instruments in the 21st Century.
Springer, 2017, pp. 137–151.

[26] Fiebrink, R. A. Real-time human interaction with supervised learning algorithms
for music composition and performance. PhD thesis, Princeton, NJ, USA, 2011.
AAI3445567.

[27] Fogarty, J., Tan, D., Kapoor, A., and Winder, S. Cueflik: interactive concept
learning in image search. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (2008), ACM, pp. 29–38.

[28] Fuhrmann, F., Haro, M., and Herrera, P. Scalability, generality and temporal
aspects in automatic aecognition of predominant musical instruments in polyphonic
music. In ISMIR (2009), pp. 321–326.

[29] Gemmeke, J. F., Ellis, D. P., Freedman, D., Jansen, A., Lawrence, W.,
Moore, R. C., Plakal, M., and Ritter, M. Audio set: An ontology and human-
labeled dataset for audio events. In Acoustics, Speech and Signal Processing (ICASSP),
2017 IEEE International Conference on (2017), IEEE, pp. 776–780.

[30] Ghias, A., Logan, J., Chamberlin, D., and Smith, B. C. Query by humming:
musical information retrieval in an audio database. In Proceedings of the third ACM
international conference on Multimedia (1995), ACM, pp. 231–236.

138

[31] Giacinto, G. A nearest-neighbor approach to relevance feedback in content based
image retrieval. In Proceedings of the 6th ACM international conference on Image and
video retrieval (2007), ACM, pp. 456–463.

[32] Gomes, J., Chambel, T., and Langlois, T. Soundslike: movies soundtrack brows-
ing and labeling based on relevance feedback and gamification. In Proceedings of the
11th european conference on Interactive TV and video (2013), ACM, pp. 59–62.

[33] Gulluni, S., Essid, S., Buisson, O., and Richard, G. An interactive system for
electro-acoustic music analysis. In ISMIR (2011), pp. 145–150.

[34] Harma, A., McKinney, M. F., and Skowronek, J. Automatic surveillance of
the acoustic activity in our living environment. In 2005 IEEE international conference
on multimedia and expo (2005), IEEE, pp. 4–pp.

[35] Hayashi, T., Komatsu, T., Kondo, R., Toda, T., and Takeda, K. Anomalous
sound event detection based on wavenet. In 2018 26th European Signal Processing
Conference (EUSIPCO) (2018), IEEE, pp. 2494–2498.

[36] Heittola, T., Mesaros, A., Eronen, A., and Virtanen, T. Context-dependent
sound event detection. EURASIP Journal on Audio, Speech, and Music Processing
2013, 1 (2013), 1.

[37] Helén, M., and Virtanen, T. Query by example of audio signals using euclidean
distance between gaussian mixture models. In Acoustics, Speech and Signal Processing,
2007. ICASSP 2007. IEEE International Conference on (2007), vol. 1, IEEE, pp. I–
225.

[38] Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen,
A., Moore, R. C., Plakal, M., Platt, D., Saurous, R. A., Seybold, B.,
Slaney, M., Weiss, R. J., and Wilson, K. Cnn architectures for large-scale audio
classification. In 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (March 2017), pp. 131–135.

[39] Houix, O., Monache, S. D., Lachambre, H., Bevilacqua, F., Rocchesso,
D., and Lemaitre, G. Innovative tools for sound sketching combining vocalizations
and gestures. In Proceedings of the Audio Mostly 2016 (2016), ACM, pp. 12–19.

[40] Humphrey, E., Durand, S., and McFee, B. Openmic-2018: An open data-set
for multiple instrument recognition.

[41] Huq, A., Cartwright, M., and Pardo, B. Crowdsourcing a real-world on-line
query by humming system.

139

[42] Jansen, A., Plakal, M., Pandya, R., Ellis, D. P., Hershey, S., Liu, J.,
Moore, R. C., and Saurous, R. A. Unsupervised learning of semantic audio rep-
resentations. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2018), IEEE, pp. 126–130.

[43] Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S., and Branson,
K. Jaaba: interactive machine learning for automatic annotation of animal behavior.
Nature methods 10, 1 (2013), 64.

[44] Karimzadehgan, M., and Zhai, C. Improving retrieval accuracy of difficult queries
through generalizing negative document language models. In Proceedings of the 20th
ACM international conference on Information and knowledge management (2011),
ACM, pp. 27–36.

[45] Kim, B. Convolutional neural networks with transfer learning for urban sound tagging.
Tech. rep., DCASE2019 Challenge, September 2019.

[46] Kim, B., and Ghaffarzadegan, S. Self-supervised attention model for weakly
labeled audio event classification. In 2019 27th European Signal Processing Conference
(EUSIPCO) (2019), IEEE, pp. 1–5.

[47] Kim, B., Ghei, M., Pardo, B., and Duan, Z. Vocal imitation set: a dataset
of vocally imitated sound events using the audioset ontology. In Proceedings of
the 2018 Workshop on Detection and Classification of Acoustic Scenes and Events
(DCASE2018) (2018).

[48] Kim, B., and Pardo, B. I-sed: an interactive sound event detector. In Proceed-
ings of the 22nd International Conference on Intelligent User Interfaces (2017), ACM,
pp. 553–557.

[49] Kim, B., and Pardo, B. A human-in-the-loop system for sound event detection and
annotation. ACM Transactions on Interactive Intelligent Systems (TiiS) 8, 2 (2018),
13.

[50] Kim, B., and Pardo, B. Improving content-based audio retrieval by vocal imitation
feedback. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (May 2019), pp. 4100–4104.

[51] Kim, B., and Pardo, B. Sound event detection using point-labeled data. In 2019
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WAS-
PAA) (2019), IEEE, pp. 1–5.

[52] Koizumi, Y., Murata, S., Harada, N., Saito, S., and Uematsu, H. Sniper:
Few-shot learning for anomaly detection to minimize false-negative rate with ensured

140

true-positive rate. In ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (2019), IEEE, pp. 915–919.

[53] Kong, Q., Xu, Y., Sobieraj, I., Wang, W., and Plumbley, M. D. Sound event
detection and time–frequency segmentation from weakly labelled data. IEEE/ACM
Transactions on Audio, Speech and Language Processing (TASLP) 27, 4 (2019), 777–
787.

[54] Kong, Q., Xu, Y., Wang, W., and Plumbley, M. D. Audio set classification with
attention model: A probabilistic perspective. In 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (2018), IEEE, pp. 316–320.

[55] Kong, Q., Yu, C., Xu, Y., Iqbal, T., Wang, W., and Plumbley, M. D.
Weakly labelled audioset tagging with attention neural networks. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing 27, 11 (2019), 1791–1802.

[56] Kubat, R., DeCamp, P., Roy, B., and Roy, D. Totalrecall: visualization and
semi-automatic annotation of very large audio-visual corpora. In ICMI (2007), vol. 7,
pp. 208–215.

[57] Kumar, A., Khadkevich, M., and Fügen, C. Knowledge transfer from weakly
labeled audio using convolutional neural network for sound events and scenes. In 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(2018), IEEE, pp. 326–330.

[58] Kumar, A., and Raj, B. Audio event and scene recognition: A unified approach
using strongly and weakly labeled data. In 2017 International Joint Conference on
Neural Networks (IJCNN) (2017), IEEE, pp. 3475–3482.

[59] Lallemand, I., Schwarz, D., and Artières, T. Content-based retrieval of envi-
ronmental sounds by multiresolution analysis. In SMC2012 (2012), pp. 1–1.

[60] Lavner, Y., and Ruinskiy, D. A decision-tree-based algorithm for speech/music
classification and segmentation. EURASIP Journal on Audio, Speech, and Music Pro-
cessing 2009 (2009), 2.

[61] Lee, C.-H., Han, C.-C., and Chuang, C.-C. Automatic classification of bird
species from their sounds using two-dimensional cepstral coefficients. Audio, Speech,
and Language Processing, IEEE Transactions on 16, 8 (2008), 1541–1550.

[62] Lemaitre, G., Houix, O., Voisin, F., Misdariis, N., and Susini, P. Vocal
imitations of non-vocal sounds. PloS one 11, 12 (2016), e0168167.

141

[63] Lemaitre, G., and Rocchesso, D. On the effectiveness of vocal imitations and
verbal descriptions of sounds. The Journal of the Acoustical Society of America 135, 2
(2014), 862–873.

[64] Li, B., Burgoyne, J. A., and Fujinaga, I. Extending audacity for audio annota-
tion. In ISMIR (2006), pp. 379–380.

[65] Liu, F., and Avci, B. Incorporating priors with feature attribution on text classifica-
tion. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics (2019), pp. 6274–6283.

[66] Ma, Y., and Lin, H. A multiple relevance feedback strategy with positive and neg-
ative models. PloS one 9, 8 (2014), e104707.

[67] Mart́ın-Morató, I., Mesaros, A., Heittola, T., Virtanen, T., Cobos, M.,
and Ferri, F. J. Sound event envelope estimation in polyphonic mixtures. In ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2019), IEEE, pp. 935–939.

[68] McFee, B., Salamon, J., and Bello, J. P. Adaptive pooling operators for weakly
labeled sound event detection. IEEE/ACM Transactions on Audio, Speech and Lan-
guage Processing (TASLP) 26, 11 (2018), 2180–2193.

[69] Mehrabi, A. Vocal imitation for query by vocalisation. PhD thesis, Queen Mary
University of London, 2018.

[70] Mehrabi, A., Dixon, S., and Sandler, M. B. Vocal imitation of synthesised
sounds varying in pitch, loudness and spectral centroid. The Journal of the Acoustical
Society of America 141, 2 (2017), 783–796.

[71] Meléndez-Catalán, B., Molina, E., and Gómez, E. Bat: An open-source,
web-based audio events annotation tool. In Proceedings of 3rd Web Audio Conference
(2017).

[72] Mesaros, A., Diment, A., Elizalde, B., Heittola, T., Vincent, E., Raj, B.,
and Virtanen, T. Sound event detection in the dcase 2017 challenge. IEEE/ACM
Transactions on Audio, Speech and Language Processing (2019).

[73] Mesaros, A., Heittola, T., and Virtanen, T. Metrics for polyphonic sound
event detection. Applied Sciences 6, 6 (2016), 162.

[74] Mettes, P., Koelma, D. C., and Snoek, C. G. The imagenet shuffle: Reor-
ganized pre-training for video event detection. In Proceedings of the 2016 ACM on
International Conference on Multimedia Retrieval (2016), ACM, pp. 175–182.

142

[75] Morrison, M., and Pardo, B. Otomechanic: Auditory automobile diagnostics via
query-by-example. In Proceedings of the 2019 Workshop on Detection and Classifica-
tion of Acoustic Scenes and Events (DCASE2019) (2019).

[76] Nakano, T., Koyama, Y., Hamasaki, M., and Goto, M. Autocomplete vocal-fo
annotation of songs using musical repetitions. In Proceedings of the 24th International
Conference on Intelligent User Interfaces: Companion (2019), ACM, pp. 71–72.

[77] Orr, D. B., Friedman, H. L., and Williams, J. C. Trainability of listening
comprehension of speeded discourse. Journal of educational psychology 56, 3 (1965),
148.

[78] Ozerov, A., Févotte, C., Blouet, R., and Durrieu, J.-L. Multichannel non-
negative tensor factorization with structured constraints for user-guided audio source
separation. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE Inter-
national Conference on (2011), IEEE, pp. 257–260.

[79] Pankajakshan, A., Bear, H., and Benetos, E. Onsets, activity, and events:
A multi-task approach for polyphonic sound event modelling. In Proceedings of
the 2018 Workshop on Detection and Classification of Acoustic Scenes and Events
(DCASE2019) (2019).

[80] Pankajakshan, A., Bear, H. L., and Benetos, E. Polyphonic sound event
and sound activity detection: A multi-task approach. In 2019 IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA) (2019), IEEE,
pp. 323–327.

[81] Parascandolo, G., Huttunen, H., and Virtanen, T. Recurrent neural net-
works for polyphonic sound event detection in real life recordings. In 2016 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016),
IEEE, pp. 6440–6444.

[82] Peeters, G. A large set of audio features for sound description (similarity and clas-
sification) in the cuidado project. Technical report, IRCAM (2004).

[83] Pons Puig, J., Nieto, O., Prockup, M., Schmidt, E. M., Ehmann, A. F.,
and Serra, X. End-to-end learning for music audio tagging at scale. In Proceedings
of the 19th International Society for Music Information Retrieval Conference, ISMIR
2018; 2018 Sep 23-27; Paris, France. p. 637-44. (2018), International Society for Music
Information Retrieval (ISMIR).

[84] Portelo, J., Bugalho, M., Trancoso, I., Neto, J., Abad, A., and Serral-
heiro, A. Non-speech audio event detection. In 2009 IEEE International Conference
on Acoustics, Speech and Signal Processing (2009), IEEE, pp. 1973–1976.

143

[85] Reynolds, D. A., Quatieri, T. F., and Dunn, R. B. Speaker verification using
adapted gaussian mixture models. Digital signal processing 10, 1 (2000), 19–41.

[86] Ribeiro, M. T., Singh, S., and Guestrin, C. ” why should i trust you?” ex-
plaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining (2016), pp. 1135–
1144.

[87] Rocchesso, D., Mauro, D. A., and Drioli, C. Organizing a sonic space through
vocal imitations. Journal of the Audio Engineering Society 64, 7/8 (2016), 474–483.

[88] Rocchio, J. Relevance feedback in information retrieval. In The SMART Retrieval
System, Experiments in Automatic Document Processing (1971), pp. 313–323.

[89] Roma, G., and Serra, X. Querying freesound with a microphone. In Proceedings
of the First Web Audio Conference (Ircam, Paris, France), submission (2015), vol. 39.

[90] Rother, C., Kolmogorov, V., and Blake, A. Grabcut: Interactive foreground
extraction using iterated graph cuts. In ACM transactions on graphics (TOG) (2004),
vol. 23, ACM, pp. 309–314.

[91] Rui, Y., Huang, T. S., Ortega, M., and Mehrotra, S. Relevance feedback: a
power tool for interactive content-based image retrieval. IEEE Transactions on circuits
and systems for video technology 8, 5 (1998), 644–655.

[92] Russakovsky, O., Li, L.-J., and Fei-Fei, L. Best of both worlds: human-machine
collaboration for object annotation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (2015), pp. 2121–2131.

[93] Salamon, J., Jacoby, C., and Bello, J. P. A dataset and taxonomy for urban
sound research. In 22nd ACM International Conference on Multimedia (ACM-MM’14)
(Orlando, FL, USA, Nov. 2014), pp. 1041–1044.

[94] Salamon, J., MacConnell, D., Cartwright, M., Li, P., and Bello, J. P.
Scaper: A library for soundscape synthesis and augmentation. In 2017 IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA) (2017), IEEE,
pp. 344–348.

[95] Saraswathy, J., Hariharan, M., Yaacob, S., and Khairunizam, W. Au-
tomatic classification of infant cry: A review. In 2012 International Conference on
Biomedical Engineering (ICoBE) (Feb 2012), pp. 543–548.

[96] Settles, B. Active learning literature survey. Tech. rep., University of Wisconsin-
Madison Department of Computer Sciences, 2009.

144

[97] Settles, B. Closing the loop: Fast, interactive semi-supervised annotation with
queries on features and instances. In Proceedings of the conference on empirical meth-
ods in natural language processing (2011), Association for Computational Linguistics,
pp. 1467–1478.

[98] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations (ICLR)
(2015).

[99] Stowell, D., Giannoulis, D., Benetos, E., Lagrange, M., and Plumbley,
M. D. Detection and classification of acoustic scenes and events. Multimedia, IEEE
Transactions on 17, 10 (2015), 1733–1746.

[100] Stowell, D., Wood, M., Stylianou, Y., Glotin, H., et al. Bird detection
in audio: a survey and a challenge. In Proceedings of the 26th IEEE International
Workshop on Machine Learning for Signal Processing (2016), IEEE Computer Society,
pp. 1–6.

[101] Talbot, J., Lee, B., Kapoor, A., and Tan, D. S. Ensemblematrix: interactive
visualization to support machine learning with multiple classifiers. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (2009), ACM, pp. 1283–
1292.

[102] Thomee, B., and Lew, M. S. Interactive search in image retrieval: a survey. Inter-
national Journal of Multimedia Information Retrieval 1, 2 (2012), 71–86.

[103] Turpault, N., Serizel, R., Salamon, J., and Shah, A. P. Sound event detec-
tion in domestic environments with weakly labeled data and soundscape synthesis. In
Proceedings of the 2019 Workshop on Detection and Classification of Acoustic Scenes
and Events (DCASE2019) (2019).

[104] Valenzise, G., Gerosa, L., Tagliasacchi, M., Antonacci, F., and Sarti,
A. Scream and gunshot detection and localization for audio-surveillance systems. In
Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. IEEE Conference
on (2007), IEEE, pp. 21–26.

[105] Vijayanarasimhan, S., and Grauman, K. Multi-level active prediction of use-
ful image annotations for recognition. In Advances in Neural Information Processing
Systems (2009), pp. 1705–1712.

[106] Vijayanarasimhan, S., and Grauman, K. Large-scale live active learning: Train-
ing object detectors with crawled data and crowds. International Journal of Computer
Vision 108, 1-2 (2014), 97–114.

145

[107] Vinay, V., Wood, K., Milic-Frayling, N., and Cox, I. J. Comparing relevance
feedback algorithms for web search. In Special interest tracks and posters of the 14th
international conference on World Wide Web (2005), pp. 1052–1053.

[108] Von Ahn, L., and Dabbish, L. Labeling images with a computer game. In Proceed-
ings of the SIGCHI conference on Human factors in computing systems (2004), ACM,
pp. 319–326.

[109] Vuegena, L., Van Den Broeckb, B., Karsmakersb, P., Vanrumsteb, J.
G. B., et al. An mfcc-gmm approach for event detection and classification. In IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).
(2013), pp. 1–3.

[110] Wang, H., Gong, S., Zhu, X., and Xiang, T. Human-in-the-loop person re-
identification. In European conference on computer vision (2016), Springer, pp. 405–
422.

[111] Wang, X.-Y., Zhang, B.-B., and Yang, H.-Y. Active svm-based relevance feed-
back using multiple classifiers ensemble and features reweighting. Engineering Appli-
cations of Artificial Intelligence 26, 1 (2013), 368–381.

[112] Wu, E., and Zhang, A. A feature re-weighting approach for relevance feedback in
image retrieval. In Image Processing. 2002. Proceedings. 2002 International Conference
on (2002), vol. 2, IEEE, pp. II–581.

[113] Xu, Z., and Akella, R. Active relevance feedback for difficult queries. In Proceed-
ings of the 17th ACM conference on Information and knowledge management (2008),
pp. 459–468.

[114] Xue, J., Wichern, G., Thornburg, H., and Spanias, A. Fast query by example
of environmental sounds via robust and efficient cluster-based indexing. In Acoustics,
Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on
(2008), IEEE, pp. 5–8.

[115] Ye, G., Li, Y., Xu, H., Liu, D., and Chang, S.-F. Eventnet: A large scale
structured concept library for complex event detection in video. In Proceedings of the
23rd ACM international conference on Multimedia (2015), ACM, pp. 471–480.

[116] Yimam, S. M., Biemann, C., Majnaric, L., Šabanović, Š., and Holzinger,
A. Interactive and iterative annotation for biomedical entity recognition. In Interna-
tional Conference on Brain Informatics and Health (2015), Springer, pp. 347–357.

[117] Zhang, Y., and Duan, Z. Supervised and unsupervised sound retrieval by vocal
imitation. Journal of the Audio Engineering Society 64, 7/8 (2016), 533–543.

146

[118] Zhang, Y., and Duan, Z. Iminet: Convolutional semi-siamese networks for sound
search by vocal imitation. In 2017 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA) (2017), IEEE, pp. 304–308.

[119] Zhang, Y., and Duan, Z. Visualization and interpretation of siamese style convo-
lutional neural networks for sound search by vocal imitation. In Acoustics, Speech and
Signal Processing (ICASSP), 2018 IEEE International Conference on (2018), IEEE.

[120] Zhang, Y., Pardo, B., and Duan, Z. Siamese style convolutional neural networks
for sound search by vocal imitation. IEEE/ACM Transactions on Audio, Speech, and
Language Processing 27, 2 (2018), 429–441.

	ABSTRACT
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Background and Motivation
	1.2. Problem Statement
	1.3. Summary of Contribution
	1.4. Broader Impact

	Chapter 2. A human-in-the-loop system for sound event annotation
	2.1. Introduction
	2.2. Related works
	2.3. Interactive sound event detection and annotation
	2.4. Interface design and implementation
	2.5. Evaluation
	2.6. Discussion
	2.7. Conclusions

	Chapter 3. Improving sound search using vocal imitation
	3.1. Introduction
	3.2. Method
	3.3. Dataset: Vocal Imitation Set
	3.4. Evaluation
	3.5. Conclusion

	Chapter 4. Sound event detection using point-labeled data
	4.1. Introduction
	4.2. Point Labeling
	4.3. Training a SED model on point-labeled data
	4.4. Experiments
	4.5. Conclusion

	Chapter 5. Conclusion
	5.1. Limitations and future work

	References

