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Abstract—We propose a system which can estimate from an
audio recording that has previously undergone lossy compression
the parameters used for the encoding, and therefore identify the
corresponding lossy coding format. The system analyzes the audio
signal and searches for the compression parameters and framing
conditions which match those used for the encoding. In particular,
we propose a new metric for measuring traces of compression
which is robust to variations in the audio content and a new
method for combining the estimates from multiple audio blocks
which can refine the results. We evaluated this system with audio
excerpts from songs and movies, compressed into various coding
formats, using different bit rates, and captured digitally as well
as through analog transfer. Results showed that our system can
identify the correct format in almost all cases, even at high bit
rates and with distorted audio, with an overall accuracy of 0.96.

Index Terms—lossy compression, audio coding format.

I. INTRODUCTION

The objective of data compression is to reduce the size
of data for more efficient storage or transmission. While
lossless compression encodes data in a reversible manner,
lossy compression removes perceptually less significant infor-
mation, typically to further reduce the size. In audio, lossy
coding formats are widely used, in music and video files
or radio and television broadcasting, with the popular ones
being MP3, AAC, AC-3, Vorbis, and WMA. Compression
algorithms which can encode to such formats first transform
the audio signal into a time-frequency representation, derive
a psychoacoustic model to locate regions of perceptually less
significance, then quantize the data given that psychoacoustic
model, and finally convert it into a bitstream [1].

Audio compression identification is thus defined as the iden-
tification of information regarding the data compression that
an audio signal has undergone, regardless of the content. This
can be, for example, the bit rate at which the audio data was
encoded, the parameters used at the time-frequency analysis
stage, or even the exact samples in the audio signal where
the framing took place before the windowing and transform
were applied. Applications include detection of alterations in
the audio data, authentication of the audio quality, or even
reverse-engineering of the encoding process.

The first ideas for identifying the framing from an audio
signal that has undergone lossy compression, in the case of
the MPEG-1 filter bank, were proposed in [2]. The goal
was to limit the accumulation of distortion when repeating
encoding and decoding. The first algorithm for identifying the
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compression parameters from an audio signal, based on AAC,
was presented in [3]. The first implementation of that work,
based on MP3, was then proposed in [4]. The idea was to
search for the compression parameters and framing conditions
which match those used for the encoding, by measuring traces
of compression in the audio signal, which typically correspond
to time-frequency coefficients quantized to zero.

The first work to investigate alterations, such as deletion, in-
sertion, or substitution, in audio signals which have undergone
lossy compression, namely MP3, was presented in [5]. The
idea was to measure traces of compression in the signal along
time and detect discontinuities in the estimated framing. An
extension of this work, using both MP3 and AAC, was later
proposed in [6]. The first work to detect audio files which
have been re-encoded using lossy compression, again MP3,
from a lower bit rate to a higher bit rate was then presented in
[7]. The idea here was to use statistical features derived from
the time-frequency analysis of the audio signal to distinguish
between single and double-compressed files. Similar works for
identifying multiple compressions, in the case of MP3, were
also proposed in [8], [9], [10], and [11], with most of them
using support vector machines (SVM) for classification, and
including the detection of the original bit rates.

Other works have also been proposed for various audio
compression identification tasks. In [12], a method was pro-
posed for identifying the coding formats and bit rates from the
bit stream, using statistical features and an SVM, and tested
with various coding formats, including MP3, AAC, Vorbis,
and WMA, for both single and double-compressed data. In
[13], that work was extended with another method using
audio quality measures. In [14], approaches were presented for
detecting multiple compressions, in the case of MP3, by using
statistical features and various machine learning algorithms. In
[15], a method was proposed for identifying the bit rates in
the case of MP3, AAC, and WMA, as well as the coding
format, by also using statistical features and an SVM. In
[16], the first method based on a convolutional neural network
(CNN) was proposed for estimating the bit rates, in the case
of AAC. In [17], a method was proposed, also based on a
CNN, for detecting if lossy compression was used at all, for
various coding formats, including MP3, AAC, AC-3, Vorbis,
and WMA, and different bit rates, including high bit rates
where traces of compression are scarce.

Based on the ideas presented in [3], [4], we propose
to analyze an audio recording which has undergone lossy



compression by searching for the compression parameters and
framing conditions which match those used for the encoding.
More specifically, the idea is to analyze the audio signal
following the time-frequency analysis of a common lossy
audio compression algorithm, for given sets of parameters
associated with known coding formats, and measure traces of
compression for different framing conditions. Because traces
of compression become visible only when the compression
parameters and framing conditions match those used for the
encoding, we are then able to infer them and identify the
corresponding lossy audio coding format.

Besides from detecting the correct compression parameters
and coding formats, this system can also find application in
identifying the original source of an audio signal. For example,
provided that different TV channels and streaming services use
different compression parameters and coding formats when
encoding their audio content, we could identify the source of
a signal by analyzing traces of compression within it and infer
the correct channel or service, even if the same content can be
played in different TV channels and streaming services. Such
a system can therefore be particularly helpful for tasks such
as media monitoring and audience measurement.

The contributions of our approach are the following. First,
we propose a new metric for measuring traces of compression
which is robust to variations in the audio content. We also
propose a new method for combining the estimates from
multiple audio blocks which can refine the results. Then, we
evaluated our system for the five popular lossy audio coding
formats, namely MP3, AAC, AC-3, Vorbis, and WMA, and
with different bit rates, including high bit rates for which traces
of compression will be scarce. Finally, we used audio record-
ings captured digitally, as well as through analog transfer
which will introduce sample desynchronization and electronic
noise in the audio. In a real-world scenario, digital and analog
transfer could correspond to audio captured through HDMI
and analog output, respectively, for example, on a set-top box.
As far as we known, the task of distinguishing between all the
popular lossy audio coding formats, including high bit rates
and distorting analog transfer, has never been done before.

The rest of the article is organized as follow. In Section II,
we describe lossy audio compression and the popular lossy
audio coding formats. In Section III, we present our lossy
audio compression identification system, including the post-
processing stage. In Section IV, we propose an evaluation of
our system for identifying lossy audio coding formats, with a
comprehensive dataset. In Section V, we conclude this article.

II. LOSSY AUDIO COMPRESSION

Lossy audio coding formats are widely used for storage,
e.g., in music and video files, and transmission, e.g., in
radio and television broadcasting. MP3, AAC, AC-3, Vorbis,
and WMA are certainly the most popular of those formats.
Compression algorithms which can encode to such formats
first transform the audio signal into a time-frequency rep-
resentation, typically by using a pseudo quadrature mirror
filter (PQMF) bank, the modified discrete cosine transform

(MDCT), or a hybrid filter bank which combines PQMF and
MDCT (e.g., in MP3) [1]. Equation (1) shows the computation
of the MDCT.
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A psychoacoustic model is derived in parallel to the time-
frequency decomposition to locate regions of perceptually less
significance, which will be ignored or quantized using fewer
bits. This will lead to traces of compression in the audio
signal, which can be visible in the derived time-frequency
representation, typically as high-frequency cuts, ruptures be-
tween frequency bands, and time-frequency holes. The data
is then quantized according to the psychoacoustic model and
finally converted into a bitstream. Additional techniques can
also be used to improve the encoding, e.g., joint stereo coding,
temporal noise shaping, spectral band replication, etc. [1].

Different coding formats will typically depend on different
parameters to encode the audio data. In particular, different
window lengths and window functions will be used at the
time-frequency analysis stage. In some cases, those parameters
can also adapt to the audio content; shorter windows can be
used for transients, and hybrid windows between short and
long windows. Window functions such as the sine, slope,
and Kaiser-Bessel-derived (KBD) windows are typically used
by the popular lossy audio coding formats, i.e., MP3, AAC,
AC-3, Vorbis, and WMA [1]. Equations (2), (3), and (4)
show the computation of the sine, slope, and KBD windows,
respectively.
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More specifically, MP3 uses 1152 samples (384 samples for
the short window) and a sine window [1], [18], [19]. AAC uses
2048 samples and a sine or KBD window with o = 4 (256
samples and KBD window with o = 6 for the short window)
[1], [19], [20]. AC-3 uses 512 samples (256 samples for the
short window) and a KBD window with o = 5 [1], [21], [22].
Vorbis uses between 64 and 8096 samples, in powers of 2,
and a slope window [23]. WMA uses between 256 and 4096
samples, in powers of 2, and an unknown window function.



All the formats use half-overlapping windows. Except for MP3
which uses a hybrid filter bank, all the formats use an MDCT
as the time-frequency transform. For more details, the reader
is referred to the provided references.

III. SYSTEM
A. Algorithm

We propose a system which can identify from an audio
recording that has undergone lossy compression the parameters
used at the time-frequency analysis stage of the encoding,
by measuring traces of compression, namely time-frequency
coefficients quantized to zero, for different sets of parameters
and at different framing positions in the audio signal. The
idea is that the zeroed time-frequency coefficients will become
visible only when the parameters and framing match those
used for the encoding. Because different coding formats use
specific compression parameters, we can consequently infer
the correct lossy audio coding format.

Fig. 1 shows the overview of our audio compression
identification system. Given a set of parameters associated
with a known coding format, i.e., time-frequency transform
t, window function w, window length N, hop size s, etc., the
algorithm first derives the spectrograms in dB from segments
Si.p+i—1 of L samples, starting at successive samples 4 in an
audio signal. It then computes the average energy over all the
time-frequency coefficients for every spectrogram and takes
the difference between successive overall energies. Assuming
that the audio content stays the same between two adjacent
spectrograms, the differences of energy will then be close to
zero, except when the parameters and framing match those
used for the encoding, in which case, zeroed coefficients will
appear and a large difference in energy will be observed.

After keeping only the positive differences, the estimated
maximum will then correspond to a matching score regarding
the given set of parameters, while the corresponding index will
indicate the position in the audio signal where the framing took
place. In practice, peaks will be observed, typically every s
samples, matching the hop size used at the time-frequency
analysis stage, typically N/2. Unlike estimating the number
of zeroed coefficients or computing the amplitude fluctuation
in individual spectrograms, as presented in some previous
works [3]-[6], computing the differences of energies between
adjacent spectrograms was shown to be a measure more robust
to changes in the audio content, leading to more accurate
results, even with high bit rates and distorted analog audio.

B. Post-processing

We also propose a post-processing stage to refine the results
obtained using the algorithm described above. Since we only
need a short audio block (typically, around 1 second) to return
meaningful estimates, we can combine the estimates from
multiple blocks in a longer audio recording to improve the
identification. The idea is to make use of the indices when
combining the scores, as a correct match will show peaks
happening at periodic locations in the signal (every s samples).
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Fig. 1. Audio compression identification algorithm overview.

We first translate every pair of scores and indices obtained
for an audio recording, and a given set of parameters, into
polar coordinates; every score thus becomes a radius in dB,
while every index is mapped into an angle in radians (modulo
its periodicity). We then take the circular mean of those points,
by converting them into Cartesian coordinates and computing
their arithmetic mean. We finally obtain a single point whose
radius will correspond to a final score, for a given set of
parameters. The estimates can therefore be seen as points
located on a circle; their centroid will have a large radius
only if most of the points have large radii and similar angles.
This simple method was shown to help deal with sample
desynchronization, for example, introduced through analog
transfer, improving the final identification.

Fig. 2 shows the results of our system applied to an audio
example compressed using AC-3, and with analog transfer.
The system analyzed 10 successive blocks from the audio
example, using 5 different sets of parameters (¢, w, N, and s)
associated with the 5 popular lossy coding formats, i.e., MP3,
AAC, AC-3, Vorbis, and WMA. As we can see (left plots), the
set of parameters associated with AC-3 returned differences
of energies (10 superimposed arrays) with high peaks located
around the same position (modulo 256 samples, the hop size
for AC-3). Peaks are not perfectly aligned because of the
sample desynchronization introduced by the analog transfer.
When mapped into polar coordinates (right plot), those peaks



translate into points with large radii and similar angles; their
centroid will therefore have a large radius, leading to a high
final score. For the other coding formats, even if spurious
peaks are observed, because of the irregular indices, they will
translate into points scattered at different angles, therefore
leading to centroids near zero and low final scores.
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Fig. 2. Results for an audio example encoded with AC-3.
IV. EVALUATION
A. Dataset

We propose to evaluate our system in identifying the correct
coding format from audio recordings encoded using one of
the five popular lossy audio coding formats, i.e., MP3, AAC,
AC-3, Vorbis, or WMA, at different bit rates, including high
bit rates, and with both digital and analog transfer, the latter
scenario which will introduce sample desynchronization and
electronic noise in the audio signal. We could not directly
compare our system to previous works, since, as far as we
know, this particular task has never been done before, previous
works were not fully developed or tested with multiple coding
formats, high bit rates, and distorted audio, and no relevant
algorithm or dataset has been made available for comparison.
Instead, we propose an evaluation of our system on a compre-
hensive dataset that we built as follows.

We first extracted one-minute audio excerpts from 10 var-
ious songs (from CDs) and 10 various movies (from Blu-
rays). We obtained 20 different uncompressed stereo WAV
files, sampled at 44.1 and 48 kHz for the song and movie
excerpts, respectively. We then compressed these files using
FFmpeg' with each one of the five popular lossy audio coding
formats, again MP3, AAC, AC-3, Vorbis, and WMA, and at
different bit rates, namely 96, 128, 192, 256, and 320 kbit/s.
These compressed audio files were finally converted back to
WAV files. The final audio recordings therefore do not have
any metadata associated with their original coding format. In
a real-world scenario, the audio recordings could be audio
streams, for example, captured on a set-top box.

Thttps://www.ffmpeg.org/

In addition to this set of digital audio examples, we also
created a set of analog audio examples, by playing the digital
audio through a phone connector and capturing the analog
counterpart with a USB audio interface. This introduced dis-
tortions in the audio in the form of sample desynchronization
and electronic noise which are meant to make the identification
more challenging. In a real-world scenario, this can correspond
to an audio stream captured through an analog output, for
example, on a set-top box. We finally obtained a total of 1,000
one-minute audio examples, for a total of 16.7 hours of data.

B. Settings

We set our system to identify the five popular lossy audio
coding formats described in Section II, by searching for the
sets of parameters associated with them. For practical reasons,
we fixed the time-frequency transform to an MDCT in all
cases, even though MP3 actually uses a hybrid transform. We
also used one fixed window length and one fixed window
function for each coding format, ignoring the less common
short and hybrid cases. We finally used a hop size equal to
half the window length in every case. In summary, we tested
MP3 with 1152 samples and a sine window, AAC with 2048
samples and a KBD window with o = 4, AC-3 with 512
samples and a KBD window with a = 5, Vorbis with 2048
samples and a slope window, and WMA with 4096 samples
and a chosen sine window. Our initial tests showed that these
settings were sufficient to return correct identification.

We ran our system on every audio example of the dataset
described earlier, testing every set of parameters described
above. After taking the average over the channels, we first
segmented every one-minute audio example into blocks of one
second, leading to 59 audio blocks per example (the last block
being ignored). We then applied the algorithm described in
Section III-A to every audio block. To minimize the impact
of potential spurious peaks, we normalized the differences
of energies using the standard score before searching for a
maximum. We also discarded the audio blocks which returned
very low scores (below a chosen threshold).

We finally applied the post-processing described in Section
III-B to the remaining estimates and obtained a final score
for every audio example, and for every coding format. To
further improve the results, we multiplied the final score by
the number of kept blocks, in practice leading to a circular
sum rather than a circular mean. We considered a match if the
correct coding format returned the highest final score, and a
non-match if an audio example got all of its blocks discarded.

C. Results

Table I and II show the identification accuracy for the set
of digital and analog audio examples, respectively. For each
combination of coding format and bit rate, 20 audio examples
(i.e., 10 song and 10 movie excerpts) were analyzed and 20
final scores were obtained. An accuracy of 0.9, for example,
means that 18 out of 20 audio examples have been correctly
identified, while 2 were non-matches. As we can see, the
system was able to identify the correct lossy audio coding



format in most of the cases, with an overall accuracy of 0.996
for the 500 audio examples of the digital set and 0.924 for the
500 audio examples of the analog set. With the settings of our
system, we did not observe any misclassification.

TABLE I
IDENTIFICATION ACCURACIES FOR THE DIGITAL SET.
Digital | 96k 128k 192k 256k 320k all
MP3 1.0 1.0 1.0 1.0 0.9 0.98
AAC 1.0 1.0 1.0 1.0 1.0 1.0
AC-3 1.0 1.0 1.0 1.0 1.0 1.0
Vorbis 1.0 1.0 1.0 1.0 1.0 1.0
WMA 1.0 1.0 1.0 1.0 1.0 1.0
All 1.0 1.0 1.0 1.0 0.98 | 0.996
TABLE I
IDENTIFICATION ACCURACIES FOR THE ANALOG SET.
Analog | 96k 128k 192k 256k 320k all
MP3 1.0 1.0 095 0.75 0.7 0.88
AAC 1.0 1.0 1.0 1.0 0.8 0.96
AC-3 0.95 1.0 1.0 095 0.75 0.93
Vorbis 1.0 1.0 1.0 1.0 0.25 0.85
WMA 1.0 1.0 1.0 1.0 1.0 1.0
All 0.99 1.0 099 094 0.7 0.924

Note that the identification typically becomes harder when
traces of compression are scarce in the audio signal, which
is the case for high bit rates (e.g., 320 kbp/s) as less data
is getting removed and for soft audio content (e.g., quiet
scenes in movies) as there is less data to be removed. The
identification is also more challenging for the analog set,
mostly because of the sample desynchronization introduced by
the analog transfer, which makes the framing detection harder,
especially at high bit rates and with soft audio content. Despite
of those limitations, our system was still able to identify the
correct parameters in most of those hard cases.

We finally noted an overall negative correlation between
the bit rates and the matching scores. Again, as the bit rate
goes higher, traces of compression become scarcer, so our
system returns a lower score. Future work will make use of
this correlation to help estimate the bit rates as well.

V. CONCLUSION

We have proposed a system which can estimate from an
audio recording that has undergone lossy compression the
parameters used for the encoding and consequently identify the
corresponding lossy coding format. We evaluated this system
with audio excerpts from songs and movies, compressed into
popular lossy coding formats, using different bit rates, and
captured digitally and with analog transfer. Results showed
that our system can identify the correct coding format in
almost all cases, even at high bit rates and with distorted audio,
with an overall accuracy of 0.96. Future work includes the
development of a more efficient search algorithm, the identifi-
cation of additional compression cues, and the application of
the system to real-world data.
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